| 研究生: |
黃楷 Huang, Kai |
|---|---|
| 論文名稱: |
困難梭狀桿菌表面層蛋白誘發脂筏介導之免疫反應 Clostridioides difficile S-layer proteins engage the lipid raft mediated inflammatory responses |
| 指導教授: |
蔡佩珍
Tsai, Pei-Jane |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 困難梭狀桿菌 、表面層蛋白 、發炎體 、脂筏 、他汀 、環糊精 |
| 外文關鍵詞: | C. difficile, S-layer proteins (SLPs), inflammasome, lipid raft, Statin, HPβCD |
| 相關次數: | 點閱:113 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Lawson, P.A., et al., Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O'Toole 1935) Prevot 1938. Anaerobe, 2016. 40.
2. Pepin, J., L. Valiquette, and B. Cossette, Mortality attributable to nosocomial Clostridium difficile-associated disease during an epidemic caused by a hypervirulent strain in Quebec. CMAJ, 2005. 173(9).
3. Rupnik, M., M.H. Wilcox, and D.N. Gerding, Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol, 2009. 7(7).
4. Paredes-Sabja, D., A. Shen, and J.A. Sorg, Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends Microbiol, 2014. 22(7).
5. Rupnik, M., Is Clostridium difficile-associated infection a potentially zoonotic and foodborne disease? Clin Microbiol Infect, 2007. 13(5).
6. Samore, M.H., Epidemiology of nosocomial Clostridium difficile diarrhoea. J Hosp Infect, 1999. 43 Suppl.
7. Pituch, H., Clostridium difficile is no longer just a nosocomial infection or an infection of adults. Int J Antimicrob Agents, 2009. 33 Suppl 1.
8. McDonald, L.C., et al., An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med, 2005. 353(23).
9. Loo, V.G., et al., A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med, 2005. 353(23).
10. Goorhuis, A., et al., Clostridium difficile PCR ribotype 078: an emerging strain in humans and in pigs? J Clin Microbiol, 2008. 46(3).
11. Luo, Y., et al., Molecular epidemiology of Clostridium difficile in two tertiary care hospitals in Shandong Province, China. Infect Drug Resist, 2018. 11.
12. Putsathit, P., et al., Prevalence and molecular epidemiology of Clostridium difficile infection in Thailand. New Microbes New Infect, 2017. 15.
13. Komatsu, M., et al., High frequency of antibiotic-associated diarrhea due to toxin A-negative, toxin B-positive Clostridium difficile in a hospital in Japan and risk factors for infection. Eur J Clin Microbiol Infect Dis, 2003. 22(9).
14. Kim, J., et al., Epidemiology of Clostridium difficile infections in a tertiary-care hospital in Korea. Clin Microbiol Infect, 2013. 19(6).
15. Hung, Y.P., et al., Predominance of Clostridium difficile Ribotypes 017 and 078 among Toxigenic Clinical Isolates in Southern Taiwan. PLoS One, 2016. 11(11): p. e0166159.
16. Jank, T. and K. Aktories, Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Trends Microbiol, 2008. 16(5).
17. Lyras, D., et al., Toxin B is essential for virulence of Clostridium difficile. Nature, 2009. 458(7242).
18. Schwan, C., et al., Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog, 2009. 5(10).
19. Sorg, J.A. and A.L. Sonenshein, Chenodeoxycholate is an inhibitor of Clostridium difficile spore germination. J Bacteriol, 2009. 191(3).
20. Poutanen, S.M. and A.E. Simor, Clostridium difficile-associated diarrhea in adults. CMAJ, 2004. 171(1).
21. Davies, A.H., et al., Super toxins from a super bug: structure and function of Clostridium difficile toxins. Biochem J, 2011. 436(3).
22. Voth, D.E. and J.D. Ballard, Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev, 2005. 18(2).
23. Fagan, R.P. and N.F. Fairweather, Biogenesis and functions of bacterial S-layers. Nat Rev Microbiol, 2014. 12(3).
24. Kirby, J.M., et al., Cwp84, a surface-associated cysteine protease, plays a role in the maturation of the surface layer of Clostridium difficile. J Biol Chem, 2009. 284(50).
25. Calabi, E., et al., Molecular characterization of the surface layer proteins from Clostridium difficile. Mol Microbiol, 2001. 40(5).
26. Calabi, E., et al., Binding of Clostridium difficile surface layer proteins to gastrointestinal tissues. Infect Immun, 2002. 70(10).
27. Fagan, R.P., et al., Structural insights into the molecular organization of the S-layer from Clostridium difficile. Mol Microbiol, 2009. 71(5).
28. Mori, N. and T. Takahashi, Characteristics and Immunological Roles of Surface Layer Proteins in Clostridium difficile. Ann Lab Med, 2018. 38(3).
29. Lynch, M., et al., Surface layer proteins from virulent Clostridium difficile ribotypes exhibit signatures of positive selection with consequences for innate immune response. BMC Evol Biol, 2017. 17(1).
30. Karjalainen, T., et al., Clostridium difficile genotyping based on slpA variable region in S-layer gene sequence: an alternative to serotyping. J Clin Microbiol, 2002. 40(7).
31. Dingle, K.E., et al., Recombinational switching of the Clostridium difficile S-layer and a novel glycosylation gene cluster revealed by large-scale whole-genome sequencing. J Infect Dis, 2013. 207(4).
32. O'Brien, J.B., et al., Passive immunisation of hamsters against Clostridium difficile infection using antibodies to surface layer proteins. FEMS Microbiol Lett, 2005. 246(2).
33. Bianco, M., et al., Immunomodulatory activities of surface-layer proteins obtained from epidemic and hypervirulent Clostridium difficile strains. J Med Microbiol, 2011. 60(Pt 8).
34. Ryan, A., et al., A role for TLR4 in Clostridium difficile infection and the recognition of surface layer proteins. PLoS Pathog, 2011. 7(6).
35. Awad, M.M., et al., Clostridium difficile virulence factors: Insights into an anaerobic spore-forming pathogen. Gut Microbes, 2014. 5(5).
36. Pechine, S., et al., Targeting Clostridium difficile Surface Components to Develop Immunotherapeutic Strategies Against Clostridium difficile Infection. Front Microbiol, 2018. 9.
37. Feher, C., A. Soriano, and J. Mensa, A Review of Experimental and Off-Label Therapies for Clostridium difficile Infection. Infect Dis Ther, 2017. 6(1).
38. Monie, T.P., C.E. Bryant, and N.J. Gay, Activating immunity: lessons from the TLRs and NLRs. Trends Biochem Sci, 2009. 34(11).
39. Ishii, K.J., et al., Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe, 2008. 3(6).
40. Kaisho, T. and S. Akira, Toll-like receptor function and signaling. J Allergy Clin Immunol, 2006. 117(5).
41. Islam, D., et al., Controlling the cytokine storm in severe bacterial diarrhoea with an oral Toll-like receptor 4 antagonist. Immunology, 2016. 147(2).
42. Ng, J., et al., Clostridium difficile toxin-induced inflammation and intestinal injury are mediated by the inflammasome. Gastroenterology, 2010. 139(2).
43. Martinon, F., K. Burns, and J. Tschopp, The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell, 2002. 10(2).
44. Zheng, D., T. Liwinski, and E. Elinav, Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discov, 2020. 6(1).
45. Franchi, L., R. Munoz-Planillo, and G. Nunez, Sensing and reacting to microbes through the inflammasomes. Nat Immunol, 2012. 13(4).
46. Liu, Y.H., et al., The ATP-P2X7 Signaling Axis Is an Essential Sentinel for Intracellular Clostridium difficile Pathogen-Induced Inflammasome Activation. Front Cell Infect Microbiol, 2018. 8.
47. Simons, K. and E. Ikonen, Functional rafts in cell membranes. Nature, 1997. 387(6633).
48. Munro, S., Lipid rafts: elusive or illusive? Cell, 2003. 115(4).
49. Fiedler, K., et al., Glycosphingolipid-enriched, detergent-insoluble complexes in protein sorting in epithelial cells. Biochemistry, 1993. 32(25).
50. Simons, K. and D. Toomre, Lipid rafts and signal transduction. Nat Rev Mol Cell Biol, 2000. 1(1).
51. Abrams, M.E., et al., Oxysterols provide innate immunity to bacterial infection by mobilizing cell surface accessible cholesterol. Nat Microbiol, 2020. 5(7).
52. Zhou, Q.D., et al., Interferon-mediated reprogramming of membrane cholesterol to evade bacterial toxins. Nat Immunol, 2020. 21(7).
53. Schwan, C., et al., Cholesterol- and sphingolipid-rich microdomains are essential for microtubule-based membrane protrusions induced by Clostridium difficile transferase (CDT). J Biol Chem, 2011. 286(33).
54. Papatheodorou, P., et al., Clostridium difficile binary toxin CDT induces clustering of the lipolysis-stimulated lipoprotein receptor into lipid rafts. mBio, 2013. 4(3).
55. Papatheodorou, P., et al., Cytotoxicity of Clostridium difficile toxins A and B requires an active and functional SREBP-2 pathway. FASEB J, 2019. 33(4).
56. Maxfield, F.R. and G. van Meer, Cholesterol, the central lipid of mammalian cells. Curr Opin Cell Biol, 2010. 22(4).
57. Luo, J., H. Yang, and B.L. Song, Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol, 2020. 21(4):.
58. Adhyaru, B.B. and T.A. Jacobson, Safety and efficacy of statin therapy. Nat Rev Cardiol, 2018. 15(12).
59. Sasaki, J., et al., A 52-week, randomized, open-label, parallel-group comparison of the tolerability and effects of pitavastatin and atorvastatin on high-density lipoprotein cholesterol levels and glucose metabolism in Japanese patients with elevated levels of low-density lipoprotein cholesterol and glucose intolerance. Clin Ther, 2008. 30(6).
60. Ramkumar, S., A. Raghunath, and S. Raghunath, Statin Therapy: Review of Safety and Potential Side Effects. Acta Cardiol Sin, 2016. 32(6).
61. Yokote, K., et al., Efficacy and safety of pitavastatin in Japanese patients with hypercholesterolemia: LIVES study and subanalysis. Expert Rev Cardiovasc Ther, 2011. 9(5).
62. Villiers, M.A., Sur la fermentation de la fécule par l’action du ferment butyrique. C. R. Acad. Sci., 1891. 112.
63. Verma, D.K., D. Gupta, and S.K. Lal, Host Lipid Rafts Play a Major Role in Binding and Endocytosis of Influenza A Virus. Viruses, 2018. 10(11).
64. Sun, X. and G.R. Whittaker, Role for influenza virus envelope cholesterol in virus entry and infection. J Virol, 2003. 77(23).
65. Liao, Z., et al., Lipid rafts and HIV pathogenesis: host membrane cholesterol is required for infection by HIV type 1. AIDS Res Hum Retroviruses, 2001. 17(11).
66. Mullane, K.M., et al., Efficacy of fidaxomicin versus vancomycin as therapy for Clostridium difficile infection in individuals taking concomitant antibiotics for other concurrent infections. Clin Infect Dis, 2011. 53(5).
67. Pepin, J., et al., Outcomes of Clostridium difficile-associated disease treated with metronidazole or vancomycin before and after the emergence of NAP1/027. Am J Gastroenterol, 2007. 102(12).
68. Pepin, J., et al., Increasing risk of relapse after treatment of Clostridium difficile colitis in Quebec, Canada. Clin Infect Dis, 2005. 40(11).
69. Al-Nassir, W.N., et al., Both oral metronidazole and oral vancomycin promote persistent overgrowth of vancomycin-resistant enterococci during treatment of Clostridium difficile-associated disease. Antimicrob Agents Chemother, 2008. 52(7).
70. Skinner, A.M., T. Scardina, and L.K. Kociolek, Fidaxomicin for the treatment of Clostridioides difficile in children. Future Microbiol, 2020. 15.
71. Brown, W.R., Fecal microbiota transplantation in treating Clostridium difficile infection. J Dig Dis, 2014. 15(8).
72. Wright, A., et al., Proteomic analysis of cell surface proteins from Clostridium difficile. Proteomics, 2005. 5(9).
73. Xu, H., et al., Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature, 2014. 513(7517).
74. 陳良奎, Activation of NLRP1 inflammasome is triggered by Clostridium difficile. 國立成功大學醫學檢驗生物技學系碩士班碩士論文, 2017.
75. Bradshaw, W.J., et al., The structure of the S-layer of Clostridium difficile. J Cell Commun Signal, 2018. 12(1).
76. Ausiello, C.M., et al., Surface layer proteins from Clostridium difficile induce inflammatory and regulatory cytokines in human monocytes and dendritic cells. Microbes Infect, 2006. 8(11).
77. Kawakami, A., et al., Pitavastatin inhibits remnant lipoprotein-induced macrophage foam cell formation through ApoB48 receptor-dependent mechanism. Arterioscler Thromb Vasc Biol, 2005. 25(2).
78. Sata, M., et al., Statins augment collateral growth in response to ischemia but they do not promote cancer and atherosclerosis. Hypertension, 2004. 43(6).
79. Zimmer, S., et al., Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Sci Transl Med, 2016. 8(333).
80. Kirk, J.A., et al., New class of precision antimicrobials redefines role of Clostridium difficile S-layer in virulence and viability. Sci Transl Med, 2017. 9(406).
81. Chen, Y., et al., Membrane Cholesterol Is Crucial for Clostridium difficile Surface Layer Protein Binding and Triggering Inflammasome Activation. Front Immunol, 2020. 11.
82. Wolkers, W.F., et al., In situ assessment of erythrocyte membrane properties during cold storage. Mol Membr Biol, 2002. 19(1).
83. Szydlarska, J., C. Weiss, and K. Marycz, The Effect of Methyl-beta-cyclodextrin on Apoptosis, Proliferative Activity, and Oxidative Stress in Adipose-Derived Mesenchymal Stromal Cells of Horses Suffering from Metabolic Syndrome (EMS). Molecules, 2018. 23(2).
84. Bernecker, C., et al., Cholesterol Deficiency Causes Impaired Osmotic Stability of Cultured Red Blood Cells. Front Physiol, 2019. 10.
85. Yamaguchi, R., G. Perkins, and K. Hirota, Targeting cholesterol with beta-cyclodextrin sensitizes cancer cells for apoptosis. FEBS Lett, 2015. 589(24 Pt B).
86. Mukhtar, R.Y., J. Reid, and J.P. Reckless, Pitavastatin. Int J Clin Pract, 2005. 59(2).
87. Saito, Y., Pitavastatin: an overview. Atheroscler Suppl, 2011. 12(3).
88. Wijarnpreecha, K., et al., Statins & risk of Clostridium difficile infection: A meta-analysis. Indian J Med Res, 2019. 150(4).
89. Tariq, R., et al., Statin use and the risk of Clostridium difficile infection: a systematic review with meta-analysis. Infect Drug Resist, 2018. 11.
校內:2026-08-30公開