簡易檢索 / 詳目顯示

研究生: 吳皇麒
wu, Huang-Chi
論文名稱: 奈米二氧化鈦光降解甲苯、苯、己烷之應用
The application of nano-titanium dioxide to photo-degrade toluene、benzene and n-hexane
指導教授: 桂椿雄
Kuei, Chun-Hsiung
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 46
中文關鍵詞: 光降解二氧化鈦
外文關鍵詞: photo-degrade, titanium dioxide
相關次數: 點閱:71下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究以Brunaure Emmett Teller(BET)測量超臨界流體法及市售品(溶膠凝膠法)此兩種不同製程所製備出之二氧化鈦的表面積,以X-Ray Powder Diffractometer(XRD)測量結構,XRD實驗結果顯示超臨界流體法製備之二氧化鈦與市售結構皆為銳鈦礦,而BET實驗結果得知超臨界流體法製備之二氧化鈦有較小的表面積與孔體積。
      以此兩種不同製程所得粉末,在固定反應槽循環流速下(4 L/min)對甲苯、苯及己烷作降解實驗,以Langmuir-Hinshelwood(L-H) kinetic model計算吸附常數及反應常數,計算結果顯示超臨界流體法製備之二氧化鈦對甲苯及苯有較高的吸附常數及較低的反應常數 ,但對己烷而言吸附常數及反應常數均小於市售品。
      以不同體積反應槽對甲苯、苯及己烷作降解實驗,以觀察觸媒表面積與反應槽體積比變化後所造成降解效率之差異性,結果顯示隨著光觸媒表面積與反應槽體積比增加降解效率亦相對提高。
      固定甲苯濃度,改變反應槽循環流速,探討降解效率的改變,實驗結果顯示隨著流速增大降解效率隨之提高。
      以市售二氧化鈦對高濃度甲苯作降解,找出降解過程所產生之中間產物,以了解甲苯之降解機制,實驗結果得知有benzaldehyde、bezoic acid、benzoic acid、p-hydroxyl benzoic acid、o-cresol、p-cresol等環狀中間產物生成,並可將甲苯降解至最終產物CO2,但於此實驗系統並無法找出甲苯開環後之直鏈中間產物。

      The research used two kinds of the area of the area of titanium dioxide surface which are made by supercritical fluid and sol-gel system , and used XRD to measure the structure , XRD demonstrates the structure of two kinds titanium dioxide are anatase , and BET demonstrates the area of surface and pore size of titanium dioxide which is made by supercritical fluid system is smaller .
      Put two different powders in stable reaction cell under 4 L/min circulate flow rates , to do the degrade experiment with toluene , benzene and n-hexane , use Langmuir-Hinshelwood(L-H) kinetic model to calculate the absorption constant and reaction constant , the result shows that the titanium dioxide which is made by supercritical fluid system has higher absorption constant and lower reaction constant , but the absorption constant and reaction constant are smaller than sol-gel system for n-hexane .
      Use reaction cell that have different volume to do the degrade experiment with toluene , benzene and n-hexane to observe the difference of efficiency made by changing the percentage of titanium dioxide surface and reaction cell volume . The result shows that according to the increasing of titanium dioxide surface/reaction cell volume , the efficiency of degradation raising relatively .
      Fix the concentration of toluene and change the rate of circulate flow to discuss the change of efficiency , the result shows that it will be more efficient when the rate of circulate flow increasing .
      Degradation of high concentration toluene by titanium dioxide which is made by sol-gel system to find all intermedium produced in the progress , The result demonstrates that there is benzaldehyde、bezoic acid、benzoic acid、p-hydroxyl benzoic acid、o-cresol and p-cresol produced , and toluene can degrade to final product , the experiments can,t find straight chain products.

    目錄 摘要……………………………………………………………………Ⅰ 目錄……………………………………………………………………Ⅳ 表目錄…………………………………………………………………Ⅵ圖目錄…………………………………………………………………Ⅶ 第一章 緒論 1-1 半導體的光催化……………………………………………2 1-2 二氧化鈦簡介………………………………………………3 1-3 催化動力模式………………………………………………7 1-4 奈米二氧化鈦製備…………………………………………8 1-5 塗佈方式……………………………………………………9 第二章 實驗 2-1 藥品……………………………………………………… 14 2-2 儀器……………………………………………………… 15 2-3 奈米板製備……………………………………………… 17 2-4 定流速不同濃度分析條件……………………………… 18 2-4-1 大反應槽分析條件…………………………………… 18 2-4-2 小反應槽分析條件…………………………………… 19 2-5 變流速對單一濃度分析條件…………………………… 19 2-6 中間產物實驗…………………………………………… 20 第三章 結果與討論 3-1 TiO2粒子物性對催化效果影響………………………………… 21 3-2 定流速條件下甲苯,苯,己烷降解率及動力學結果(大反應槽)………………………………………………………………………22 3-2-1 甲苯降解結果…………………………………………… 22 3-2-2 苯降解結果……………………………………………… 22 3-2-3 己烷降解結果…………………………………………… 23 3-3 定流速條件下甲苯,苯,己烷降解率及動力學結果(小反應槽)……………………………………………………………… 30 3-3-1 甲苯降解結果…………………………………………… 30 3-3-2 苯降解結果……………………………………………… 30 3-3-3 己烷降解結果…………………………………………… 31 3-4 定濃度條件下甲苯降解率及動力學結果……………………… 37 3-5 甲苯反應機制…………………………………………………… 39 第四章 結論……………………………………………………………43 參考文獻……………………………………………………………… 45

    1.K. Wolf, A. Yazdani, J. Air Waste Manage. Assoc. 41(1991)1055
    2.J. J Shah, H.B. Singh, Environ. Sci. Technol. 22 (1988)1381
    3.C. F. Wilkinson, Environ. Sci. Technol. 21 (1987)843
    4.D. F. Ollis, E. Pelizzetti, N. Serpone, Environ. Sci. Technol. 25 (1991)1522
    5.O. Legrini, E. Oliveros, A. M. Braun, Chem. Rev. 93 (1993)671
    6.K. C. G.. Low, S. R. McEvoy, R. W. Matthews, Environ. Sci. Technol. 25 (1991)460
    7.R. M. Alberici, W. F. Jardim, Applied Catalysis B: Environmental 14 (1997)55
    8.Y. Nosaka, M. A. Fox, J. Phys. Chem. 92 (1988)1893
    9.R. W. Matthews, J. Catal. 113 (1988)549
    10.A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev. 95 (1995)735
    11.J. Fan, J. T. Yates, J. Am. Chem. Soc. 118 (1996)4686
    12.J. K. Burdett, T, Hughbands, J. M. Gordon, J. W. Richardson, J. Am. Chem. Soc. 109 (1987)3639
    13A. Augustynski, J. Electrochim. Acta, 38 (1993)43
    14.A. Wold, Chem. Master. 5 (1993)280
    15. M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 95(1995)69
    16. A. L. Linsebigler, G, Lu, J. T. Yate, Chem. Rev. 95 (1995)735
    17. M. A. Fox, T. Dulay, Chem. Rev. 93 (1993)341
    18. O. d,Hennezel, D. F. Ollis, J. Catal. 167(1997)118
    19. O. d,Hennezel, Ph. D. Thesis, North Carolina State University/Ecole Centrale de Lyon. 1998
    20. Y. Luo, D. F. Ollis, J. Catal. 163 (1996)1
    21. M. L. Sauer, M. A. Hale, D.F. Ollis, J. Photochem. Photobiol. A:Chem. 88 (1995)169.
    22. T. Ibusuki, K. Takeuchi, Atmos. Environ. 20 (1986)1711
    23. S. A. Larson, J. L. Falconer, Catal. Lett. 44 (1997)57
    24. J. Blano, P. Avila, A. Bahamonde, E. Alvarez, B. Sanchez, M. Romero, Catal. Today 29 (1996)437
    25. R. Atkinson, S, M. Aschmann, Int. J. Chem. Kinetics 21 (1989)355
    26. R. Seuwen, P. Warneck, Physico-Chemical Behavior of Atmospheric Pollutants 1 (1994)137
    27. O. d,Hennezel, D. F. Ollis, in: J. W. Hightower, W.N. Delgass, E.Iglesia, A. T. Bell(Eds.), Studues in Surf. Sci. Catal. 101. Part A,Elsevier, Amsterdam (1996)137
    28.W. A. Jacoby, D. M. Blake, J. A. Fennell. J. E. Boulter, L. M. Vargo, M. C. George, S. K. Dolberg, J. Air and Waste Manage, Assic. 46 (1996)891
    29. X. Fu, W. A. Zeltner, M. A. Anderson, Appl. Catal. B6(1995)209
    30. S. Sitkiewitz, A. Heller, New J. Chem. 20 (1996)233
    31. W. Ralph, Matthews, J. Phys. Chem. 91 (1987)3328
    32. K. Chhor, Materials Chemistry and Physis 32 (1992)249
    33. Z. S. Hu, J. X. Dong, G. X. Chen, Power Technology 101 (1999)205
    34. V. G. Courtecuisse, J. Supercrit. Fluids 9 (1996)222
    35. M . Lal , V. Chharba, J. Mater. Res 13 (1998)1249
    36. H. Sakai, H. Kawahara, M. Shimazaki, M. Abe, Lungmuir 14 (1998)2208
    37. T. Kasuga, M. Hiramatsu, M. Hirano, A. Hoson, J. Mater. Res. 12 (1997)607
    38. K. L. Yeung, A. J. Maria, J. Phys. Chem. B 106 (2002)4608
    39. Z. Zhang, C. C. Wang, R. Zakaria, J. Y. Ying, J. Phys. Chem. B 102(1998)10871
    40. C. C. Wang, J. Y. Ying, Chem. Mater. 11 (1999)3113
    41. S. Kangawa, cHem. Mater. 9 (1997)1050
    42. V. Subramanian, E. Wolf, P. V. Kamat, J. Phys. Chem.B 105 (2001)11439
    43. X. Wu, D. Wang, S. Yang, J. Colloid. Interface. Sci. 222 (2000)37
    44. J. P. Jalava, L. Heikkila, O. Hovi, R. Laiho, E. Hiltunen, A. Hakanen, H. Harma, Ind. Eng. Chem. Res 37(1998)1317
    45. M. Anpo, T. Shima, S. Kodama, Y. Kubokawa, J. Phys. Chem 91 (1987)4305
    46. H. Schmidt, M. Mennig, Wet Coating Technologys for Galss, Nov. 2000.
    47. Noboru Kameya, LCD Intelligence, April, 1999
    48 A.J. Maria, K.L. Yeung, Applied Catalysis B : Environmental. 29 (2001) 327.

    下載圖示 校內:立即公開
    校外:2004-07-12公開
    QR CODE