| 研究生: |
陳彥儒 Chen, Yen-Ju |
|---|---|
| 論文名稱: |
利用不同凹槽設計於圓柱壓縮實驗以進行可鍛造性評估 Utilizing Different Notch Designs on Upsetting Test for Forgeability Evaluation |
| 指導教授: |
李榮顯
Lee, Rong-Shean |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 圓柱壓縮試驗 、凹槽設計 、可鍛造性 |
| 外文關鍵詞: | Upsetting test, Forgeability, Notched design |
| 相關次數: | 點閱:150 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於金屬材料而言,獲得其成形極限對於模具設計與製程設計相當重要。對於可鍛造性的評估,通常利用圓柱壓縮試驗以得到其成形極限,但對於高延展性之金屬材料,若仍利用圓柱壓縮試驗則不易獲得其成形極限。因此本文將數種凹槽設計應用於圓柱壓縮試驗上,透過不同之凹槽設計改變試件破壞發生之快慢,以利成形極限之獲得。凹槽設計之應力集中效果有助於提早試件破壞的發生,對於找出材料之成形極限極有幫助。而由不同凹槽設計所達到的不同應力集中效果,可改變試件上局部位置能量累積之速度,使試件在不同的壓縮量下發生破壞。此外,具凹槽設計之試件在相同壓縮量下,其能量累積值均比無凹槽試件之能量累積值高,代表凹槽設計的確有加速能量累積之效果。最後,本文以能量消耗率(ECR)作為評估因子,進行不同凹槽設計之效能評比,並提出未來可應用之方向與建議。
The forgeability of a material is a good indicator when evaluating different materials for industrial use. Normally, upsetting tests can help to create the forming limit diagram (FLD) of a material, which shows the forgeability of a material in various strain paths. Experimental results show that after large deformation, fractures do not occur on a free surface when testing materials with high ductility. Therefore, a notched upsetting test is proposed in this thesis. Applying notch designs on specimens would help to accelerate the fracture initiation. With different notch designs on a specimen, one can obtain different acceleration effects on the specimen. Also, compared to the specimen without notch design, various notch designs on the specimen would lead to different concentration effects on energy consumption. These concepts and results were demonstrated and supported by the results from finite element analysis, and were verified by notched upsetting tests. An indicator called the Energy Consumption Rate (ECR) was proposed for evaluating the effect of notch designs, and it showed good capability for forgeability evaluation.
1.Atkins, A. G.,“Fracture in forming,” Journal of Materials Processing Technology, vol. 56, pp.609-618, 1996
2.Barnett, K. J., “Research initiatives for the forging industry,” Journal of Materials Processing Technology, Vol.98, pp.162-164, 2000
3.Bay, N., “Cold forming of aluminum- state of the art,” Journal of Materials Processing Technology, Vol. 71, pp.76-90, 1997
4.Behrens, A., H. Just, “Extension of the forming limits in cold and warm forging by the FE based fracture analysis with the integrated damage model of effective stresses,” Journal of Materials Processing Technology, Vol.125-126, pp.235-241, 2002
5.Bramley, A. N., D. J. Mynors, “The use of forging simulation tools,” Materials and Design, Vol.21, pp.279-286, 2000
6.Byrer, T. G., S. L. Semiatin, D. C. Vollmer, “Forging handbook,” Forging Industry Association, pp.99-101, 1995
7.El-Domiaty, A., “Cold-workability limits for carbon and alloy steels,” Journal of Materials Engineering and Performance, Vol.8, pp.171-183, 1999
8.Engel, U., R. Eckstein, “Microforming- from basic to its realization,” Journal of Materials Processing Technology, Vol.125-126, pp35-44, 2002
9.Gouveia, B.P.P.A., J.M.C. Rodrigues, P.A.F. Martins, “Ductile fracture in metalworking- experimental and theoretical research,” Journal of Materials Processing Technology, Vol.101, pp.52-63, 2000
10.Gouveia, B.P.P.A., J.M.C. Rodrigues, P.A.F. Martins, “Fracture predicting in bulk metal forming,” International Journal of Mechanical Science, Vol.38, pp.361-372, 1996
11.Gupta, Saurabh, N. Venkata Reddy, P. M. Dixit, “Ductile fracture prediction in axisymmetric upsetting using continuum damage mechanics,” Journal of Materials Processing Technology, Vol.141, pp.256-265, 2003
12.Hu, X. L., J. T. Hai, W. M. Chen, “Experimental study and numerical simulation of the pressure distribution on the die surface during upsetting,” Journal of Materials Processing Technology, Vol.151, 367-371, 2004
13.Hu, Z. M., T. A. Dean, “A study of surface topography, friction and lubricants in metalforming,” International Journal of Machine Tools & Manufacture, Vol.40, pp.1637-1649, 2000
14.Janicek, L., B. Maros, “The determination of the cold forgeability for specimens with axial notches of heat resisting and corrosion resisting chromium nickel steels,” Journal of Materials Processing Technology, Vol.60, 269-274, 1996
15.Kim, D. J., T. W. Ku, B. S. Kang, “Finite element analysis of micro-rolling using grain and grain boundary elements,” Journal of Materials Processing Technology, Vol.130-131, pp.456-461, 2002
16.Kim, H. K., T. Yagi, M. Yamanaka, “FE simulation as a must tool in cold warm forging process and tool design,” Journal of Materials Processing Technology, Vol.98, 143-149, 2000
17.Ko, D. C., B. M. Kim, J. C. Choi, “Prediction of surface-fracture initiation in the axisymmetric extrusion and simple upsetting of an aluminum alloy,” Journal of Materials Processing Technology, Vol.62, pp.166-174, 1996
18.Ko, D. C., D. H. Kim, B. M. Kim, “Application of artificial neural network and Taguchi method to preform design in metal forming considering workability,” International Journal of Machine Tools & Manufacture, Vol.39, pp.771-785, 1999
19.Kudo, H. and K. Aoi,“Effect of Compression Test Condition upon Fracture of a Medium Carbon Steel,” J. Japan Soc. Tech. Plasticity, vol. 8, pp.17-27, 1967
20.Landre, J., A. Pertence, P. R. Cetlin, J.M.C. Rodrigues, P.A.F. Martins, “On the utilisation of ductile fracture criteria in cold forging,” Finite Elements in Analysis and Design, Vol.39, pp.175-186, 2003
21.Lin, X. B., F. B. Zhai, Z. L. Zhang, “Determination of metal material flow stress by the method of C-FEM,” Journal of Materials Processing Technology, Vol.120, pp.144-150, 2002
22.MacCormack, C., J. Monaghan, “Failure analysis of cold forging dies using FEA,” Journal of Materials Processing Technology, Vol.117, pp209-215, 2001
23.MacCormack, C., J. Monaghan, “2D and 3D finite element analysis of a three stage forging sequence,” Journal of Materials Processing Technology, Vol.127, pp.48-56, 2002
24.Melander, A., A. Thuvander, “Influence of surface roughness and void growth at inclusions on the forming limit diagram of brass,” Scandinavian Journal of Metallurgy, Vol.12, pp.217-226, 1983
25.Min, D. K., M. E. Kim, “A study on precision cold forging process improvements for the steering yoke of automobiles by the rigid-plastic finite-element method,” Journal of Materials Processing Technology, Vol.138, pp.339-342, 2003
26.Narayanasamy, R., K. S. Pandey, “Phenomenon of barreling in aluminum solid cylinders during cold upset-forming,” Journal of Materials Processing Technology, Vol.70, pp.17-21, 1997
27.Olsson, K., S. Karlsson, A. Melander, “The influence of notches, testing geometry, friction conditions, and microstructure on the cold forgeability of low carbon steels,” Scandinavian Journal of Metallurgy, Vol.15, pp.238-256, 1986
28.Oyane, M., T. Sato, K. Okimoto, S. Shima, “Criteria for ductile fracture and their applications,” Journal of Mechanical Working Technology, pp.65-81, 1980
29.Petruska, J., L. Janicek, “Computationally-experimental workability determination of compressed cylindrical specimen with surface defect,” Journal of Materials Processing Technology, Vol.80-81, pp.572-578, 1998
30.Pilkey, W. D., Peterson's stress concentration factors, 2nd. Ed. Wiley-Interscience, New York, pp.10~39, 1997
31.Rao, A. V., N. Ramakrishnan, R. Krishna Kumar, “A comparative evaluation of the theoretical failure criteria for workability in cold forging,” Journal of Materials Processing Technology, Vol.142, pp.29-42, 2003
32.Sljapic, V., P. Hartley, I. Pillinger, “Observations on fracture in axi-symmetric and three-dimensional cold upsetting of brass,” Journal of Materials Processing Technology, Vol.125-126, pp.267-274, 2002
33.Tan, X. C., “Comparisons of friction models in bulk metal forming,” Tribology International, Vol.35, pp.385-393, 2002
34.Tiesler, N., U. Engel, M. Geiger, “Forming of microparts- effects of miniaturization of friction,” 6th International Conference on Technology of Plasticity, Vol.1, pp.889-894, 1999
35.Wang, J. P., Y. T. Lin, “The load analysis of the plane-strain forging processes using the upper-bound stream-function elemental technique,” Journal of Materials Processing Technology, Vol.47, pp.345-359, 1995
36.Wifi, A. S., A. Abdel-Hamid, H. El-Monayri, N. El-Abbasi, “Finite element determination of workability limits for disks and rings under different upsetting conditions,” Journal of Materials Processing Technology, Vol.56, pp.918-932, 1996
37.Woodall, S. M., J. A. Schey, “Determination of ductility for bulk deformation,” ASTM Special Technical Publication, pp.191-205, 1978
38.Yoshima, H., K. Tanaka, “Precision forging of aluminum and steel,” Journal of Materials Processing Technology, Vol.98, pp.196-204, 2000
39.Zhang, X. Q., Y. H. Peng, X. Y. Ruan, “Simulation and fracture prediction for sintered materials in upsetting by FEM,” Journal of Materials Processing Technology, Vol.105, pp.253-257, 2000
40.王水鐸,“高強度鋁合金鍛造成形極限之探討,” 國立成功大學機械工程研究所碩士論文, 1986
41.李榮顯, 塑性加工學, 三民書局, pp.99-113, 1986
42.馬承九, 機械加工- 非切削, 俊銘文教基金會, pp.213-220, 2000
43.陳日興, “高強度鋁合金冷鍛成形極限電腦輔助評估之研究,” 國立成功大學機械工程學系碩士論文, pp.17-25, 2002
44.毛慶中, “模具表面形貌對精微鍛粗之摩擦效應,” 國立成功大學機械工程學系碩士論文, pp. 44-46, 2005