簡易檢索 / 詳目顯示

研究生: 朱立邦
Li-Pang, Chu
論文名稱: 高溫氣相沉積法合成奈米碳球
Synthesis of carbon nanospheres using thermal chemical vapor deposition method
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 116
中文關鍵詞: 奈米碳球高溫氣相沉積法
外文關鍵詞: thermal CVD, carbon nanospheres
相關次數: 點閱:68下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以高溫氣相沉積法來製備奈米碳球(carbon spheres),在高溫之下將碳源直接裂解產生碳原子,進而合成米碳球。本實驗使用的碳源有甲苯、異丙醇、甲烷、乙炔,並討論在反應溫度、碳源、氣體流量、反應時間對奈米碳球的生長有什麼樣的影響,並將合成的奈米碳球去做SEM、TEM、Raman、EDX和XRD的分析。
    奈米碳球可以輕易地由碳源直接裂解合成,本實驗當中所合成的奈米碳球,在收集盤各處的散落情形與奈米碳球粒徑分布概況大致上一樣,並不會有特別集中的現象發生。在奈米碳球的組成元素當中,碳元素佔了極大的組成比例,而氧元素則佔了少部分的比例。在合成奈米碳球的製程參數中,隨著溫度的升高,合成的奈米碳球平均粒徑愈小,而奈米碳球形成團簇的情形也比較少;當流量增加時,合成的奈米碳球平均粒徑愈大,而奈米碳球形成團簇的情形也會增多;而反應時間拉長,合成的奈米碳球平均粒徑愈大,而奈米碳球形成團簇的情形也容易發生。組成奈米碳球的石墨層結晶性質不好,石墨化程度並不高,有很多無序排列的碳原子存在,其主要結構是石墨結晶(002)面與少量的(100)面,也可得知在使用甲苯、異丙醇、乙炔、甲烷等不同碳源所合成的奈米碳球其組成結構差異性並不大。

    We synthesized the carbon nanosphere by using thermal CVD in this experiment.The carbon atoms decomposed directly from carbon sources synthesized carbon nanosphere. In this experiment, we used toluene, isopropanol, acetylene,and methane as carbon sources, discussed how the reaction temperature, carbon sources, flow rate, reaction time affect the growth of carbon nanospheres and also analyzed the carbon nanosphere by using SEM, TEM, EDX, Raman, and XRD.
    Carbon nanospheres can be easily synthesized directly by decomposing the carbon source. For the synthesized Carbon nanosphere in this experiment, the specially centralized phenomenon certainly won’t occur when the situation that scatter in the collector is roughly same with the situation carbon nanosphere distruibution in the collector. In composition element of carbon nanosphere, the carbon element has accounted for the enormous composition proportion, but the oxygen element has accounted for very little of the partial proportions. In synthesis parameter of carbon nanosphere, along with temperature elevating, the synthesized carbon nanosphere becomes smaller in diameter of sphere in average; however, the situation that carbon nanosphere forms cluster becomes a lot less. In other words, when flow rate increases, the synthesized carbon nanosphere becomes bigger in diameter of sphere averagely and the situation that carbon nanosphere forms cluster will also increase; Still, when the reaction time pulls long, the average diameter of the synthesized carbon nanosphere becomes bigger and the situation that the synthesized carbon nanosphere forms cluster is easy to occur. The nature of graphite crystal composing carbon nanosphere is not good. The synthesized carbon nanospheres exhibit a low degree of graphitization and has many carbon atoms disorderly arranged. It’s main structure is graphitic (002) plane with a few (100) plane. It may also be known that the composition structure of the carbon nanospheres synthesized by using toluene, isopropanol, acetylene,and methane as carbon souce, has almost no difference.

    目錄 摘要......................................................i Abstract.................................................ii 目錄.....................................................iv 表目錄.................................................xiii 圖目錄...................................................ix 第一章 序論............................................1 1-1 前言.................................................1 1-2 研究動機與目的.......................................3 第二章 文獻回顧 .......................................4 2-1 常見的碳同素異形體....................................4 2-1-1 鑽石..............................................4 2-1-2 石墨..............................................6 2-1-3 碳簇..............................................8 2-1-4 奈米碳管.........................................12 2-1-4-1 奈米碳管的性質.................................15 2-1-4-2 奈米碳管的成長機制.............................17 2-2 奈米碳球的製造方法...................................19 2-2-1 混合價電子氧化物觸媒碳化法.......................19 2-2-2 觸媒式化學氣相沉積法.............................19 2-2-2 直接裂解法.......................................20 2-3 奈米碳球的成長機制...................................21 2-4 奈米碳顆粒的應用與未來發展...........................24 2-5 X光繞射儀之原理......................................25 2-6 拉曼散射原理.........................................28 第三章 實驗 ........................................30 3-1 儀器設備.............................................30 3-1-1 反應爐體.........................................30 3-1-2 氣體流量控制.....................................30 3-1-3 冷卻系統.........................................30 3-1-4 產物收集.........................................32 3-2 實驗材料............................................33 3-3 實驗流程............................................34 3-3-1 液態碳源........................................34 3-3-2 氣態碳源........................................36 3-4 實驗參數............................................38 3-4-1甲苯.............................................38 3-4-2異丙醇............................................39 3-4-3 氣態碳源.........................................39 3-5 儀器分析.............................................40 3-5-1 SEM..............................................40 3-5-2 TEM. ............................................40 3-5-3 Raman Sperctrum..................................40 3-5-4 EDX..............................................40 3-5-5 XRD..............................................40 第四章 結果與討論...................................41 4-1 奈米碳球的分佈概況...................................41 4-2 奈米碳球的組成分析...................................45 4-3 溫度對合成奈米碳球的影響.............................47 4-4 流量對合成奈米碳球的影響.............................59 4-4-1 甲苯為碳源的製程參數.............................59 4-4-2 異丙醇為碳源的製程參數...........................70 4-4-3 結語......................... ...................75 4-5 反應時間對合成奈米碳球的影響.........................77 4-6 奈米碳球的結構分析...................................88 4-6-1 拉曼光譜分析.....................................88 4-6-2 X光繞射分析......................................96 4-6-3 穿透式電子顯微鏡分析............................100 4-6-4 結語............................................102 第五章 結論........................................103 參 考 文 獻.............................................104 表目錄 表3-1 實驗所使用的氣態碳源與承載氣體.....................33 表3-2 實驗所使用的液態碳源...............................33 表3-3 以甲苯為碳源的製程參數.............................38 表3-4 以異丙醇為碳源的製程參數...........................39 表3-5 氣態碳源的製程參數.................................39 圖目錄 Fig.1-1 碳顆粒的紋理分類..................................2 Fig.2-1 鑽石晶體結構意示圖................................5 Fig.2-2 石墨的晶體結構....................................7 Fig.2-3 C60結構意示圖....................................11 Fig.2-4 1967年加拿大蒙特婁世界博覽會上的美國館,建築物高 60公尺...................................................11 Fig.2-5 奈米碳管形成意示圖...............................13 Fig.2-6 奈米碳管的三種型態...............................13 Fig.2-7 Chiral vector定義為 Ch = n â1 + m â2 θ為â1 與Chiral vector 的夾角...................................14 Fig.2-8 奈米碳管的導電性質...............................16 Fig.2-9(a) 底部成長機制意示圖............................18 Fig.2-9(b) 頂端成長機制意示圖............................18 Fig.2-10 (a)六邊形,(b)五邊形,和(c)七邊形碳環結構組成的 石墨薄片.................................................22 Fig.2-11 由五邊形、六邊形、七邊形碳環結構組合產生的石 墨薄片之二維結構模型.....................................22 Fig.2-12 (a) 五邊形成核 (b) 類二十邊形碳殼成長 (c) 具螺 旋狀殼的碳顆粒形成[b] (d) 大尺寸碳球的成長...............23 Fig.2-13 X光繞射意示圖...................................27 Fig.2-14 拉曼散射意示圖..................................29 Fig.3-1 合成奈米碳顆粒之製程設備意示圖...................31 Fig.4-1 收集盒內隨機取的六個點...........................42 Fig.4-2 在收集盒中隨機所取的樣本,(a)1 (b)2 (c)3.........43 Fig.4-2 在收集盒中隨機所取的樣本,(d)4 (e)5 (f)6.........44 Fig.4-3以(a)甲苯 (b)甲烷 為碳源奈米碳球的EDX分析圖......46 Fig.4-4 甲苯在氬氣流量為100sccm、反應時間5分鐘、溫度 為(a)1400℃(b)1300℃(c)1200℃(d)1100℃ 的電子顯微鏡圖....53 Fig.4-5 甲苯在氬氣流量為100sccm、反應時間5分鐘、溫度 為1400℃(b)1300℃的奈米碳球粒徑分佈圖....................54 Fig.4-5 甲苯在氬氣流量為100sccm、反應時間5分鐘、溫度 為 (c)1200℃(d)1100℃ 的奈米碳球粒徑分佈圖...............55 Fig.4-6甲苯在氬氣流量為100sccm、反應時間5分鐘、溫度 為(a)1400℃ (b)1300℃的奈米碳球粒徑累積圖................56 Fig.4-6甲苯在氬氣流量為100sccm、反應時間5分鐘、溫度為 (c)1200℃ (d)1100℃的奈米碳球粒徑累積圖.................57 Fig.4-7以甲苯為碳原、在氬氣流量為100sccm、反應時間為5 分鐘,反應溫度對奈米碳球平均粒徑的關係圖..................58 Fig.4-8 甲苯為碳源、溫度為1400℃、反應時間為5分鐘、流 量為50sccm 的電子顯微鏡照片..............................61 Fig.4-9 甲苯為碳源、溫度為1400℃、反應時間為5分鐘、流 量為50sccm 的奈米碳球粒徑分佈圖.........................61 Fig.4-10 甲苯為碳源、溫度為1400℃、反應時間為5分鐘、流 量為50sccm的奈米碳球粒徑累積圖..........................62 Fig.4-11甲苯為碳源、溫度為1000℃、反應時間為1小時、 流量為5slh 的電子顯微鏡照片..............................66 Fig.4-12甲苯為碳源、溫度為1000℃、反應時間為1小時、流 量為5slh 的奈米碳球粒徑分佈圖............................66 Fig.4-13甲苯為碳源、溫度為1000℃、反應時間為1小時、流 量為10slh 的電子顯微鏡照片...............................67 Fig.4-14甲苯為碳源、溫度為1000℃、反應時間為1小時、流 量為10slh 的奈米碳球粒徑分佈圖...........................67 Fig.4-15甲苯為碳源、溫度為1000℃、反應時間為1小時、流 量為30slh 的電子顯微鏡照片...............................68 Fig.4-16甲苯為碳源、溫度為1000℃、反應時間為1小時、流 量為30slh 的奈米碳球粒徑分佈圖...........................68 Fig.4-17甲苯為碳源、溫度為1000℃、反應時間為1小時、流 量為(a)5slh (b)10 (c)30slh 的奈米碳球粒徑分佈圖...........69 Fig.4-18 異丙醇為碳源、溫度為1000℃、反應時間為1小時、 流量為 (a)30slh (b)50slh 的電子顯微鏡圖..................72 Fig.4-19 異丙醇為碳源、溫度為1000℃、反應時間為1小時、 流量為 (a)30slh (b)50slh 的奈米碳球粒徑分佈圖............73 Fig.4-20 異丙醇為碳源、溫度為1000℃、反應時間為1小時、 流量為 (a)30slh (b)50slh 的奈米碳球粒徑累積圖............74 Fig.4-21 甲苯為碳源、溫度為1000℃、反應時間為10 分鐘、 流量為10slh的電子顯微鏡照片.............................79 Fig.4-22 甲苯為碳源、溫度為1000℃、反應時間為10分鐘、 流量為10slh的奈米碳球粒徑分佈圖.........................79 Fig.4-23 甲苯為碳源、溫度為1000℃、反應時間為10分鐘、 流量為10slh的奈米碳球粒徑累積圖.........................80 Fig.4-24 甲苯為碳源、溫度為1000℃、反應時間為5分鐘、 流量為10slh的奈米碳球經過酒精收集、充分混合的電子顯微 鏡照片...................................................83 Fig.4-25 甲苯為碳源、溫度為1000℃、反應時間為5分鐘、 流量為10slh的奈米碳球經過酒精收集、充分混合的奈米碳球 粒徑分佈圖...............................................83 Fig.4-26 甲苯為碳源、溫度為1000℃、反應時間為10分鐘、 流量為10slh的奈米碳球經過酒精收集、充分混合的電子顯微 鏡照片...................................................84 Fig.4-27 甲苯為碳源、溫度為1000℃、反應時間為10分鐘、 流量為10slh的奈米碳球經過酒精收集、充分混合的奈米碳球 粒徑分佈圖...............................................84 Fig.4-28 甲苯為碳源、溫度為1000℃、流量為10slh (a)反應 時間為5分鐘 (b)反應時間為10分鐘 的奈米碳球經過酒精收集 、充分混合的粒徑累積圖....................................85 Fig.4-29 有限尺寸晶體內(in finite crystal)的A1g拉曼活性 振動模式.................................................92 Fig.4-30 (a)甲苯(b)異丙醇 為碳源之拉曼光譜圖.............93 Fig.4-30 (C)乙炔(d)甲烷 為碳源之拉曼光譜圖...............94 Fig.4-31 典型碳材料的拉曼光譜比較圖......................95 Fig.4-32 (a)甲苯(b)異丙醇 為碳源所合成之奈米碳球XRD分 析圖.....................................................98 Fig.4-32 (C) 甲烷 (d) 乙炔 為碳源所合成之奈米碳球XRD分 析圖.....................................................99 Fig.4-33 (a)甲苯為碳源、溫度1000℃、氬氣流量為15 slh、 反應時間為5分鐘 (b)乙炔為碳源、溫度1000℃、流量為 100sccm、反應時間為5分鐘 所合成之奈米碳球之TEM圖........101

    [1] Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE. C60:
    Buckminsterfullerene. Nature 1985;318:162–3.
    [2] Iijima S. Helical microtubules of graphitic carbon. Nature
    1991;354:56–8.
    [3] Brooks JD, Taylor GH. The formation of graphitizing carbons
    from the liquid phase. Carbon 1965;3:185–6.
    [4] Serp Ph, Feurer R, Kalck Ph, Kihn Y, Faria JL, Figueiredo JL. A chemical vapour deposition process for the production of carbon nanospheres. Carbon 2001;39:621–6.
    [5] Xia YN, Gates B, Yin YD, Lu Y.Monodispersed colloidal spheres:old materials with new application. Adv. Mater. 2000;12:693–713.
    [6] Sharon M, Mukhopadhyay K, Yase K, Iijima S, Ando Y, Zhao
    X. Spongy carbon nanobeads–a new material. Carbon
    1998;36:507–11.

    [7] Zhong ZY, Chen HY, Tang SB, Ding J, Lin JY, Tan KL.
    Catalytic growth of carbon nanoballs with and without cobalt
    encapsulation. Chem. Phys. Lett. 2000;330:41–7.
    [8] Wang Q, Li H, Chen LQ, Huang XJ. Monodispersed hard carbon spheruler with uniform nanopores. Carbon 2001;39:2211–4.
    [9] Liu XY, Huang BC, Covolle NJ. The Fe(CO)5 catalyzed pyrolysis of pentane: carbon nanotube and carbon nanoball formation. Carbon 2002;40:2791–9.
    [10] Pradhan D, Sharon M. Carbon nanotubes, nanofilaments and
    nanobeads by thermal chemical vapor deposition process. Mater.
    Sci. Eng. B 2002;96:24–8.
    [11] Qiu JS, Li YF, Wang YP, Liang CH, Wang TH, Wang DB. A
    novel form of carbon micro-balls from coal. Carbon 2003;41:767–72.
    [12] Wang ZL, Kang ZC. On accretion of nanosized carbon spheres.
    J. Phys. Chem. 1996;100:5163–5.

    [13] Kang ZC, Wang ZL. Pairing of pentagonal and heptagonal carbon rings in the growth of nanosized carbon spheres synthesized by a mixed-valent oxide-catalytic carbonization process. J. Phys. Chem. 1996;100:17725–31.
    [14] Jacobsen RL, Mothioux M. Carbon beads with protruding cones.Nature 1997;385:211–2.
    [15] Liu YC, Qiu XP, Huang YQ, Zhu WT. Methanol electrooxidation
    on mesocarbon microbead supported Pt catalysts.
    Carbon 2002;40:2375–80.
    [16] Uchida M, Aoyama Y, Tanabe M, Yanagihara N, Eda N, Ohta
    A. Influences of both carbon supports and heat-treatment of
    supported catalyst on electrochemical oxidation of methanol. J. Electr. Soc. 1995;142:2572–6.
    [17] Nishizawa M, Hashitani R, Itoh T, Matsue T, Uchida I.
    Measurements of chemical diffusion coefficient of lithium ion in graphitized mesocarbon microbeads using a microelectrode.
    Electrochemical and Solid-State Letters, v 1, n 1, Jul, 1998, 10-12.

    [18] Umeda M, Dokko K, Fujita Y, Mohamedi M, Uchida I, Selma
    JR. Electrochemical impedance study of Li-ion insertion into
    mesocarbon microbead single particle electrode. Part I. Graphitized carbon. Electrochim. Acta. 2001;47:885–90.
    [19] 廬冠廷,流體床觸媒式化學氣相沉積法合成奈米碳材料,國立成功大學材料科學與工程學研究所碩士論文,2004
    [20] W.M. Qiao, Y. Song , S.Y. Lim , S.H. Hong , S.H. Yoon ,
    I. Mochida , T. Imaoka. Carbon nanospheres produced in an arc-discharge process. Carbon 2006;44:187–90.
    [21] Inagaki M. Discussion of the formation of nanometric texture in spherical carbon bodies. Carbon 1997;35:711–3.
    [22] http://phycomp.technion.ac.il/~sshaharr/c-gif.html#c
    [23] http://www.benbest.com/cryonics/graphite.gif
    [24] http://nano.nchc.org.tw/dictionary/c60.html
    [25] http://www.sdu.dk/Nat/Chem/kemi_net/LostFast/C60.gif
    [26] S. Iijima, Nature 354, P.56 (1991)

    [27] Kang, Wang. Synthesis of carbon spheres/tubes using a mixed-valent oxide-catalytic carbonization process,Materials Research Society Symposium - Proceedings, v 454, Advanced Catalytic Materials - 1996, 1997, p 15-20
    [28] J.-Y. Miao. Synthesis and properties of carbon nanospheres grown by CVD using Kaolin supported transition metal catalysts . Carbon, v42, n4, 2004, p 813-822
    [29] Y.Z. Jin. Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons. Carbon, v 43, n 9, August, 2005, p 1944-1953
    [30] A. Levesque et al. Monodisperse carbon nanopearls in a foam-like arrangement:a new carbon nano-compound for cold cathodes. Thin Solid Films 464– 465 (2004) 308–314
    [31] Kroto, H. W.; McKay, K. Nature 1988, 331, 328.
    [32] Elzbieta Frackowiaka , Franc¸ois Be´guinb. Carbon materials for the electrochemical storage of energy in
    Capacitors. Carbon 39 (2001) 937–950.
    [33] Flandrois S, Simon B. Carbon materials for lithium-ion rechargeable batteries. Carbon 1999;37:165–80.
    [34] Vignal V, Morawski AW, Konno H, Inagaki M. Quantitative assessment of pores in oxidized carbon spheres using scanning tunneling microscopy. J. Mater. Res. 1999;14(3):1102–12.
    [35] Inagaki M, Vignal V, Konno H, Morawski AW. Effect of carbonization atmosphere and subsequent oxidation on pore
    structure of carbon spheres observed by scanning tunneling microscopy. J. Mater. Res. 1999;14(7):3152–7.
    [36] X .Zhao, Y .Ando, L C Qin, Characteristic Raman spectra of multiwalled carbon nanotube, Physica B: Condensed Matter, v 323, n 1-4, October, 2002, 265-266.
    [37] S .Lefrant , Raman and SERS studies of carbon nanotube systems ,Current Applied Physics, 2(2002)479-482.
    [38] M. S. Dresselhaus , A. Jorio, A.G. Filho, Raman spectroscopy on one isolated carbon nanotube. Physica B, 323(2002)15-20.
    [39] M. Sugano,A. Kasuya , K. Tohji. Resonance Raman scattering and diameter-dependent electronic states in single-wall carbon nanotube. Chemical Physics Letters, 292(1998)575-579.

    [40] http://en.wikipedia.org/wiki/Image:Raman_energy_levels.jpg
    [41] H.-. Qian et al., Carbon 42 (2004) 761-766
    [42] F. Tuinstra and J. L. Koenig, Raman Spectrum of Graphite. J. Chem. Phys. 53, 1126(1970)
    [43] P. Lespade, R. Al-Jishi, and M.S. Dresselhaus, Carbon 20,427 (1982).
    [44] R.j. Nemanich and S. A. Solin, First- and second-order Raman scattering from finite-size crystals of graphite, Phys. Rev. B 20, 392 (1978).
    [45] R.j. Nemanich, G. Lucovsky, and S. A. Solin, Mater. Sci.Eng. 31, 157 (1977).
    [46] M. S. Dresselhaus and G. Dresselhaus, in Light Scattering in Solids III, edited by M. Cardona and G. Gunterodt (Springer-Verlag. Berlin, 1982), P.2.
    [47] D.S. Knight and W. B. White, J. Mater. Res. 4, 385 (1989).
    [48] Zheng, Zhe; Chen, Xuanhua ,Raman spectra of coal-based graphite

    Science in China (Scienctia Sinica) Series B Volume: 38, Issue: 1, January, 1995, pp. 97-106.

    [49] K. Nakamura, M. Fujitsuka, and M. Kitajima, Disorder-induced line broadening in first-order Raman scattering from graphite, Phys. Rev. B 41, 12260–12263 (1990).
    [50] Obraztsova,E.D. Raman identification of onion-like carbon. Carbon, v 36, n 5-6, 1998,821-826.
    [51] Joel W. Ager III, D. Kirk Veirs, and Gerd M. Roseenblatt. Spatially resolved Raman studies of diamond films grown by CVD. Physical Review B. Vol.43,Number 8,6491-99.
    [52] http://www.cysh.cy.edu.tw/subject/chem/imag_422/C60的1.jpg
    [53] http://students.chem.tue.nl/ifp03/introduction.html
    [54] http://www.fda.gov/nanotechnology/powerpoint_conversions/chbsa-nanotech-presentation06-05_files/images/image1.png
    [55]http://students.chem.tue.nl/ifp03/images/image001.jpg
    [56]http://students.chem.tue.nl/ifp03/images/image002.jpg

    [57]T. Yamabe, Recent development of carbon nanotube, Synthetic Metals,1995,(70): 1511-1518
    [58] Yasuda, Ayumu, Kawase, Noboru, and Mizutani, Wataru.Carbon-Nanotube Formation Mechanism Based on in Situ TEM Observations. Journal of Physical Chemistry B 106(51), 13294-13298.
    [59] S. B. Sinnot et al., Chem.Phys.Lett. 315, 25-30 (1999).
    [60] http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/bragg.html
    [61] http://www.ttu.edu.tw/instrument/X-ray.pdf
    [62] http://www.mse.fcu.edu.tw/laboratory/materials%20experiment/06.doc
    [63] http://hyperphysics.phy-astr.gsu.edu/hbase/atmos/raman.html
    [64] http://epsc.wustl.edu/haskin-group/Raman/faqs.htm
    [65]J. Robertson, Materials Science and Engineering R 37 (2002) 165.
    [66]C.A. Taylor et al. Residual stress measurement in thin carbon films by Raman and nanoindentatio. Thin Solid Films 429 (2003) 190-200
    [67] U.D. Venkateswaran, A.M. Rao, E. Richter, et al., Probing the single-wall carbon nanotube bundle: Raman scattering under high pressure. Phys. Rev.B 59 (1999) 10928.
    [68] Sasaki, Yasushi; Sizuki, Seiju; Ishii, Kuniyoshi, Deposition of tungsten by natural convection flow in CVD process, Journal of Chemical Engineering of Japan, v 31, n 1, Feb, 1998, p 135-137
    [69]Robert E. Reed-Hill, Reza Abbaschian, PHYSICAL METALLURGY PRINCIPLES, 3rd ed.: PWS PUBLISHING COMPANY,Boston 1994
    [70]陳慶芳編,流體力學概論,徐氏基金會,P.145–155 (1987)

    下載圖示 校內:2007-08-29公開
    校外:2007-08-29公開
    QR CODE