簡易檢索 / 詳目顯示

研究生: 葉育君
Yeh, Yu-Chun
論文名稱: 調濕建材應用於住宅室內空間之性能預測與評估
Prognosis and Assessment of Moisture Buffering Materials Applied in Residential Building
指導教授: 蔡耀賢
Tsay, Yaw-Shyan
學位類別: 博士
Doctor
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 92
中文關鍵詞: 室內環境品質調濕建材EnergyPlus黴菌發芽風險評估
外文關鍵詞: Indoor Environment Quality, Moisture Buffering Materials, EnergyPlus, Mold Germination Graph Method
相關次數: 點閱:151下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,符合當地氣候的永續建築設計,無論是國內外均已經受到建築設計者之重視。然而,永續建築設計除了能源效率外,居住者之健康與舒適度也必須被考慮。近年來,濕氣對室內環境所造成的問題,漸漸受到國際間的重視。相對濕度對於居住者有直接的影響。過低的濕度,不僅會使居住者的呼吸系統產生乾燥等不舒適感,也是流行性感冒病毒活性大的濕度範圍,容易使人感染生病,且低濕度也容易發生靜電現象。
    台灣位於亞熱帶氣候區,屬於高濕度地區,相當適合生物性汙染物生長。台灣建築物爲隔絕掉外界環境所造成之噪音或空氣污染,許多建築物在設計建造時,建築設計者常認為提高建築物外殼之氣密性為設計時之必要考量,沒有設置良好之通風設備,於是一般台灣住宅容易因為室內悶熱,而導致黴菌及塵蟎等生物性汙染物滋生,除造成不衛生的室內環境,更直接影響居住者之身體健康。因此,如何改善國內住宅室內環境濕氣問題為一重要課題。
    針對室內濕氣的控制問題,調濕建材的使用是一種有效的被動式控制手法,其原理是利用多孔質建材對於濕氣的吸放來緩和室內濕氣的變動。調濕建材的使用可有效抑制室內高濕度的出現頻率,提升室內空氣品質及居住者健康。
    為了更有效確認調濕設計對黴菌滋生的控制,本研究以台灣典型住宅套房單元作為研究對象,模擬評估使用花旗松與側柏為調濕建材時,對於室內濕氣調節效果。研究首先以實驗求得材料熱濕物性,作為數值模擬參數。接著採用EnergyPlus軟體中的有效滲透深度法進行空間熱濕環境模擬。最後利用黴菌發芽預測模型,評估不同調濕建材使用面積量以及搭配不同換氣策略對降低生物性污染風險的效果。
    研究結果發現,花旗松與側柏調濕建材設置於垂直牆面可達較佳之調濕效果,以容積70 m3之套房空間,設置調濕建材面積45 m2可達到最佳效果,再增加面積調濕性能增加不大。另外,將調濕建材水平設置於地板與天花板之效果比設置於垂直牆面差,故建議於室內裝修成本之考量下,可先以設置調濕建材於垂直牆面進行裝修。
    而使用調濕建材搭配強制換氣之結果指出,日間的強制換氣量越大時,越能降低室內整體的相對濕度,在本研究模擬案例C-3之12 ACH可達到最佳調濕效能。然而對於5月份(梅雨季)之高濕度環境,建議於減少通風換氣量,以及設置主動式除濕策略,以維持室內相對濕度於舒適範圍內。
    使用調濕建材搭配換氣也能有效降低黴菌發芽之風險,於夏季改善率最高可達94%,其次為秋季改善率達44%。春季與冬季雖較夏季秋季改善率低,但也可對室內黴菌發芽環境改善13%。且使用花旗松時夏季空調耗電量相較於無使用調濕建材降低了5.41 kWh,側柏降低了6.74 kWh,顯示使用調濕建材搭配通風換氣除了可以改善室內空氣品質、降低黴菌孳生,更可達節能之效果。

    Indoor moisture concerns, which directly affect indoor biological pollutants, are receiving worldwide attention. In Western countries, extensive research concerning the effect of humidity on human health has been conducted. Taiwan is located in a subtropical region and has a climate with high temperatures and high humidity. According to data, the monthly average relative humidity (RH) for the major cities in Taiwan is between 70% and 85% (1981–2010). The Environmental Protection Administration of Taiwan publishes the recommended concentration limits of indoor pollutants, including fungi and bacteria, which represent moisture-related pollution. In summer, Taiwan experiences a higher indoor concentration of fungi than the United States or Finland do, which indicates that Taiwan has a more suitable climate for the growth of fungi.
    Mold, dust mites, and other microorganisms are the causes of asthma and allergies. Air pollution has caused medical treatment of asthma to increase. Thus, Taiwan’s high temperature and high humidity present a high risk for the growth of mold and other microorganisms.
    Moisture buffering is a passive design method that uses the adsorption and desorption of porous moisture-buffering materials to reduce indoor moisture variation. Moisture buffering is considered to be more sustainable than mechanical and chemical solutions. The moisture-buffering effect can be discussed on three levels: the material, system, and room levels. The levels of these last three factors are essential to the moisture-buffering effect.
    This study obtains the hygroscopic properties of Douglas fir and Western Red Cedar, and then presents a numerical simulation approach based on the effective moisture penetration depth (EMPD) method, which was performed using the EnergyPlus program developed by the U.S. Department of Energy. The results of the simulation are discussed using a mold germination graph to evaluate the mold growth risk in a single housing unit of 70 m3, and then, the energy consumption is discussed.
    This results showed that for a housing unit of 70 m3, the optimal area of moisture buffering materials is 45 m2. The area more than 45 m2 is not effective. Also, the moisture buffering materials on vertical wall is better than the horizontal floor and ceiling. Moreover, the optimal ventilation rate is 12 ACH, which achieves a better moisture-buffering effect for a residential unit. However, during the hight humidity season (such as May), the active dehumidifier is suggested.
    Furthermore, using the moisture buffering materials could reduce the mold germination risk about 94% in summer, 44% in fall and 13% in both spring and winter. Also, the energy consumption of using Douglas fir could reduce 5.41 kWh in summer, and Western Red Cedar could reduce 6.74 kWh. This demonstrates that using moisture buffering materials with ventilation could rise the indoor air quality, reduce the mold risk and decrease energy consumption.

    謝誌.......i 摘要.......iii Abstract.......v 圖目錄.......xi 表目錄.......xv 第1章 緒論.......1 1.1 研究背景.......1 1.1.1 永續建築發展與室內環境品質.......1 1.1.2 住宅室內環境濕氣問題.......1 1.1.3 室內環境品質、濕氣環境與環境效率.......2 1.1.4 室內濕氣調節策略.......3 1.2 研究目的.......3 1.3 研究範圍與步驟.......4 1.4 研究流程與架構.......4 第2章 文獻回顧與相關理論 .......7 2.1 室內濕度與空氣品質....... 7 2.2 室內濕度與人體健康 .......7 2.3 調濕建材原理與研究 .......8 2.4 濕氣物性相關理論.......9 2.4.1 濕氣傳導率.......9 2.4.2 平衡含水率.......9 2.5 數值模擬方法.......10 2.5.1 建築熱、空氣與濕氣數值模擬模型之方法....... 10 2.5.2 精算法.......13 2.5.3 簡算法.......13 2.6 建築耗能模擬軟體EnergyPlus之應用.......17 2.7 黴菌風險評估.......17 第3章 研究方法.......19 3.1 研究對象.......19 3.2 建材濕氣物性標準測定法.......19 3.2.1 濕氣傳導率測定方法 .......20 3.2.2 平衡含水率測定方法 .......22 3.3 EnergyPlus模擬設定.......23 3.3.1 模擬空間設定.......23 3.3.2 模擬空間濕氣產生量與通風換氣時程設定 .......23 3.3.3 濕氣平衡空氣方程式 .......25 3.4 黴菌發芽風險模型.......26 第4章 調濕建材濕氣物性實驗測定結果.......27 4.1 濕氣傳導率測定結果.......27 4.2 平衡含水率測定結果 .......28 4.3 有效濕氣滲透深度計算結果.......30 第5章 數值模擬結果.......31 5.1 花旗松模擬結果.......31 5.1.1 室內空間使用花旗松後之濕度模擬結果.......31 5.1.2 改變花旗松垂直設置面積.......32 5.1.3 改變花旗松水平設置面積.......35 5.1.4 改變室內通風換氣量 .......39 5.2 側柏模擬結果.......42 5.2.1 室內空間使用側柏後之濕度模擬結果.......42 5.2.2 改變側柏垂直設置面積.......44 5.2.3 改變側柏水平設置面積.......46 5.2.4 改變室內通風換氣量 .......50 5.3 花旗松與側柏模擬結果比較.......53 第6章 綜合評估.......55 6.1 室內環境品質評估.......55 6.1.1 花旗松之室內環境評估.......55 6.1.2 側柏之室內環境評估 .......57 6.1.3 花旗松與側柏綜合比較.......59 6.2 黴菌發芽模型評估.......61 6.2.1 黴菌發芽模型.......61 6.2.2 全年黴菌發芽風險比例評估.......64 6.2.3 黴菌發芽風險評估.......66 6.3 耗能評估.......81 第7章 結論與建議.......85 7.1 結論.......85 一、 EMPD法可以有效評估建材調濕之現象.......85 二、 調濕建材之使用面積會影響調濕之效果.......85 三、 搭配日間通風換氣可達較佳性能.......86 四、 使用調濕建材可降低健康風險.......86 五、 於梅雨季節建議調濕建材搭配主動式調濕手法.......87 六、 使用調濕建材不會增加能源消耗.......87 7.2 建議.......87 參考文獻 .......89

    中央氣象局(2010),中央氣象局1981-2010氣象統計資料,取自www.cwb.gov.tw。
    行政院內政部營建署 (2010),建築技術規則,建築設備編。
    行政院內政部營建署 (2010),建築技術規則,設計施工編。
    行政院內政部建築研究所 (2000),綠建築設計技術彙編。
    行政院內政部建築研究所 (2012),綠建築評估手冊。
    紀碧芳 (2003),受黴菌汙染建材上之黴菌種類研究,國立成功大學環境醫學研究所碩士論文。
    齊祖同 (1997),麴黴屬及其相關有性型,中國孢子植物誌之中國真菌誌,中國科學研究院編,科學出版社,第五卷。
    蔡耀賢,江哲銘 (2009)。台灣氣候下室內調濕建材之適用性探討。建築學報,(69),35-50。
    蔡耀賢,鍾松晉,江哲銘 (2010)。各種調濕建材之性能測試與評估。建築學報,(74技術專刊),1-14。
    顏瑞鴻,黃胤喜,鍾仲純,黃郁雯,鍾麗琴,陳金亮 (1999),人類手指甲中麴菌種類之初步調查研究,醫護科技學刊,1(1),85-91。
    日本建築学会編(2006) ,湿気物性に関する測定規準・同解説―日本建築学会環境基準 AIJES‐H001‐2006。
    Abadie, M., Deblois J.P., and Mendes N. (2005). A comparison exercise for calculation heat and moisture transfers using TRNSYS and PowerDomus. IEA Annex 41 Report A41-T1-Br-05-2.
    Abe, K., Nagao, Y., Nakada, T., and Sakuma, S. (1996) Assessment of indoor climate in an apartment by use of a fungal index. Appl Environ Microbiol, 62(3), 959-63.
    Abe, S. (1956) Studies on the Classification of the Penicillia. Journal of General and Applied Microbiology Tokyo. 2(1-2), 344.
    Adan, O. (1994) On the fungal defacement of interior finishes. Doctoral Thesis, The Netherlands.
    Andrade, C., Sarria, J., and Alonso, C. (1999). Relative humidity in the interior of concrete exposed to natural and artificial weathering, Cement and Concrete Research, 29, 1249-1259
    Ayerst, G. (1969) The Effect of Moisture and Temperature on Growth and Spore Germination in Some Fungi. J. Stored Products Research, 5, 127-41.
    Bornehag, C.G., Sundell, J., Bonini, S., Custovic, A., Malmberg, P., Skerfving, S., Sigsgaard, T., and Verhoeff, A. (2004). Dampness in buildings as a risk factor for health effects, EUROEXPO: a multidisciplinary review of the literature (1998–2000)on dampness and mite exposure in buildings and health effects. Indoor Air, 14, 243–257.
    BS 3900-G6 (1989). Methods of test for paints. Assessment of resistance to fungal growth. British Standards Institution.
    Castellsague, J., Sunyer, J., Saez, M., and Anto, J.M. (1995) Short-term association between air pollution and emergency room visits for asthma in Barcelona. Thorax, 50, 1051-6.
    Clarke, J.A., Johnstone, C.M., Kelly, N.J., McLean, R.C., Anderson, J.A., Rowan, N.J., and Smith, J.E. (1999) A technique for the prediction of the conditions leading to mould growth in buildings. Building and Environment, 34, 515-21.
    Fumo, N., Mago, P., and Chamra, L., (2009). Energy and Economic Evaluation of Cooling, Heating, and Power Systems Based on Primary Energy. Applied Thermal Engineering, 29, 265-2671.
    Griffith, B., and Crawley, D. (2006). Methodology for Analyzing The Technical Potential for Energy Performance in The U.S. Commercial Buildings Sector with Detailed Energy Modeling. SimBuild 2006 Conference Paper, Cambridge, Massachusetts.
    Harper, G.J. (1961). Airborne Micro-organism: Survival test with four viruses, The Journal of Hygiene, 59(4), 479-486.
    Health Canada (1987). Exposure Guidelines for Residential Indoor Air Quality. Report of the Federal-Provincial Advisory Committee on Environmental and Occupational Health, Canada.
    Hens, H. (1999) Fungal Defacement in Buildings: A Performance Related Approach. HVAC&R Research, 5(3), 265-89.
    Hens, H. (2004). Impact of adventitious ventilation on the moisture performance of roofs in moderate climates. IEA Annex 41 report A41-T1-B-04-1.
    Hsieh, K.H., and Shen. (1988) J.J. Prevalence of childhood asthma in Taipei, Taipei, Taiwan and other Asia Pacific countries. J Asthma, 25, 73-82.
    Hukka, A. and Viitanen, H.A. (1999) A mathematical model for mould growth on wooden material. Wood Sci Technol, 33, 475-85.
    IEA-Annex 14 (1990). Condensation and energy. Guidelines and practice. Leuven: Acco.
    Itabashi, T., Hosoe, T., Toyasaki, N., Imai, T., Adachi, M., and Kawai, K. (2007) Allergen activity of xerophilic fungus,Aspergillus restrictus. Arerugī, 56(2), 101-8.
    ISO 12571 (2000). Hygrothermal performance of building materials and products – Determination of hygroscopic sorption properties. Geneva, Switzerland: International Organization for Standardization.
    ISO 12572 (2001). Hygrothermal performance of building materials and products – Determination of water vapor transmission properties. Geneva, Switzerland: International Organization for Standardization.
    Janssens, A., Woloszyn, M., Rode, C., Sasic-Kalagasidis, A., and Paepe, M. De (2008). From EMPD to CFD – overview of different approaches for Heat Air and Moisture modeling in IEA Annex 41. IEA ECBCS Annex 41 Closing Seminar, Copenhagen, June 19.
    Johansson, S., Wadsö, L., and Sandin, K. (2010) Estimation of mold growth levels on rendered façades on surface relative humidity and surface temperature measurements. Build Environ, 45, 1153-60.
    Kerestecioglu, A., Swami, M., Dabir, R., Razzaq, N., and Fairey, P. (1988). Theoretical and Computational Investigation of Algorithms for Simultaneous Heat and Moisture Transport in Buildings, FSEC-CR-191-88, Florida Solar Energy Center, Cape Canaveral, FL.
    Kunzel, H.M., Holm, A., Zirkelbach, D., and Karagiozis, A.N. (2005). Simulation of indoor temperature and humidity conditions including hygrothermal interactions with building envelope, Solar Energy, 78, 554-561.
    Leech, J.A., Nelson, W.C., Burnett, R.T., Aaron, S. and Aizenne, M.E. (2002) It’s about time: a comparison of Canadian and American time-activity patterms. J Expo Annual Eviron Epidemiol, 12, 427-32
    Li, Y., Fazio, P., and Rao, J. (2012) An investigation of moisture buffering performance of wood paneling at room level and its buffering effect on a test room. Building and Environment, 47, 205-16.
    Meyer, B. (1983). Indoor Air Quality, MT, U.S.A.: Addison-Wesley, Reading Mass.
    Moon, H.J. (2005) Assessing mold risk in buildings under uncertainty. Doctoral Thesis, Dissertation, Georgia.
    Ojanen, T., Viitanen, H., Peuhkuri, R., Lâhdesmäki, K., Vinha, J., and Salminen, K. (2010) Mold growth modeling of building structures using sensitivity classes of materials. Proceedings Building XI, Florida.
    The Ministry of Health, Labor and Welfare of Japan (2010) From: www.mhlw.go.jp/english/index.html.
    Tsay, Y.S., Chiang, C.M., Kato, S., Ooka, R., and Huang, K.T. (2008) Study on the Moisture Buffering Effect and Energy Impact of Interior Materials in Taiwan. The World Sustainable Building Conference, Melbourne, Australia, Sep.21-25, 2372-7.
    Rode, C., Reuhkuri, R., Time, B., Gustavsan, A., Ojanen, T., Ahonen, J., and Svennberg, K. (2005). Moisture Buffering of Building Materials, Report BYG-DTU R-126. Report of the Nordisk Innovations Center, Department of Civil Engineering, Technical University of Denmark.
    Rowan, N., Johnstone, C., Craig, R., Anderson, J., and Clarke, J. (1999) Prediction of toxigenic fungal growth in buildings by using a novel modeling. Appl Environ Microbiol, 65(11), 4814-21.
    Sedlbauer, K., Krus, M., Zillig, W., and Kunzel, H.M. (2001) Mold Growth Prediction by Computational Simulation. Tagungsabend (auf CD) zur ASHRAE-Konferenz IAQ, San Francisco.
    Sheppard, L., Levy, D., Norris, G., Larson, T.V., and Koenig, J.Q. (1999) Effects of ambient air pollution on nonelderly asthma hospital admissions in Seattle, Washington, 1987-1994. Epidemiology, 10, 23-30.
    Singapore Standard SS (2009). Code of Practice for Indoor Air quality for Air-Conditioned Building, 554.
    Smith, G. (1931). Aspergillus restrictus. J of Textile Research Institute, 22, 115.
    Smith, S.L., and Hill, S.T. (1982) Influence of Temperature and Water Activity on Germination and Growth of Aspergillus Restrictus and Aspergillus Versicolor. Transactions of British Mycological Society, 79(3), 558-60.
    Stadler, M., Firestone, R., Curtil, D., and Manay, C. (2006) On-Site Generation Simulation with EnergyPlus for Commercial Buildings. Environmental Energy Technologies Division. Ernest Orlando Lawrence Berkeley National Lab, LBNL-60204.
    Walters, S., Phupinyokul, M., and Ayres, J. (1995) Hospital admission rates for asthma and respiratory disease in the West Midlands: their relationship to air pollution levels. Thorax, 50, 948-54.
    Wu, P.C., Su, H.J., Lin, C.Y. (2000) Characteristics of indoor and outdoor airborne fungi at suburban and urban homes in two seasons. The Science of The Total Environment, 253(1-3), 111-8.
    Yeh, Y.C., Tsay, Y.S., and Chiang, C.M. (2011). Study on the Performance and Application of Interior Moisture Buffering Materials for the Typical Housing in Taiwan, Advanced Materials Research, 250-253 (May), 3723-3729.
    Yoshino, H., Mitamura, T., and Hasegawa, K. (2009) Moisture buffering and effect of ventilation rate and volume rate of hygrothermal materials in a single room under steady state exterior conditions. Building and Environment, 44(7), 1418-25.
    Zhai, Z., Johnson, M., and Krarti, M. (2011). Assessment of Natural And Hybrid Ventilation Models in Whole-Building Energy Simulations. Energy and Building, 43, 2251-2261.
    Zhang, H., Yoshino, H., and Hasegawa, K. Assessing the moisture buffering performance of hygroscopic material by using experimental method. Building and Environment, 48, 27-34.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE