簡易檢索 / 詳目顯示

研究生: 林靜宜
Li, Ching-Yi
論文名稱: 多值函數在拓樸向量空間上可行概凸集的定點理論
Fixed Points of Multimaps On Admissible Almost Convex Sets In Topological Vector Spaces
指導教授: 黃永裕
Huang, Young-Ye
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 23
中文關鍵詞: 定點理論
外文關鍵詞: Fixed Points
相關次數: 點閱:40下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   我們使用鄭志中先生,黃永裕先生以及許惠貞小姐近期介紹的擴充性KKM映射及嚴格的KKM性質之概念去研究若T屬於SKKM(X,X)而X為拓樸向量空間$E$中的可行概凸子集的定點問題.我們建立若T屬於SKKM(X,X)是緊緻閉函數,則T就有定點.藉由這個新定點理論我們可以應用於某些遊戲理論中的平衡點問題.

     We use the concepts of generalized KKM mapping and the strict KKM property, which are recently introduced by J. C. Jeng, Y. Y. Huang and H. C. Hsu, to investigate the fixed point problem for T belong to SKKM(X,X) with X an admissible almost convex subset of a topological vector space E. We establish that if T belong to SKKM}(X,X) is compact and closed, then it has a fixed point. As applications of this new fixed point theorem, some results related to equilibrium problem in game theory are also deduced.

    Section 1. Introduction 5 Section 2. Admissible Almost Convex Sets 8 Section 3. Fixed Point Theorems 11 Section 4. Applications 18 References 26

    [1] H. Ben-El-Mechaiekh and P. Deguire, Approachability and fixed points for non-convex set-valued maps,
    J. Math. Anal. Appl., 1709(1992), 477-500.

    [2] S. S. Chang and Y. Zhang, Generalized KKM theorem and variational inequalities,
    J. Math. Anal. Appl., 159(1991), 208-223.

    [3] T. H. Chang and C. L. Yen, KKM property and fixed point theorems, J. Math. Anal. Appl., 203(1996), 224-235.

    [4] T. H. Chang, Y. Y. Huang and J. C. Jeng, Fixed point theorems for multifunctions in S-KKM
    class, Nonlinear Analysis, T. M. A.,44(2001),1007-1017.

    [5] A. Had$check{mbox{z}}$i$acute{mbox{c}}$, On the admissibility of topological vector spaces, Acta Sci.
    Math.,42,(1980),81-85.

    [6] C. J. Himmelberg, Fixed points of compact multifunctions, J. Math. Anal. Appl.,
    38(1972), 205-207.

    [7] A. Idzik, Almost fixed point theorems, Proc. of A. M. S.,104(1988),779-784.

    [8] A. Idzik and S. Park, Leary-Schauder type theorem and equilibrium
    existence theorem, Differential Inclusion and Optimal Control, 2(1998),191-197.

    [9] J. C. Jeng, Y. Y. Huang and H. C. Hsu, Fixed point theorems for multifunctions having
    KKM property on almost convex sets,(submitted).

    [10] V. Klee, Leray-Schauder theory without local convexity, Math. Ann., 141
    (1960), 286-296.

    [11] M. Lassonde, Fixed points for Kakutani factorizable multifunctions, J. Math. Anal. Appl., 152(1990),
    46-60.

    [12] M. Nagumo, Degree of mapping in convex linear topological spaces,
    Amer. J. Math.,75(1951),497-511.

    [13] S. Park, A unified fixed point theory of multimaps on topological
    vector spaces, J. Korea Math. 35(1998), 803-828;
    Corrections to $^{ackprimeackprime}$A unified fixed point theory of multimaps on topological
    vector spaces$^{primeprime}$, J. Korea Math. 36(1999), 829-832.

    [14] W. Rudin, Functional Analysis, second edition, 1991, McGraw-Hill, Inc.

    [15] H. Weber, Compact convex sets in nonlocally convex linear spaces, Note di Matematica,
    12(1992), 271-289.

    下載圖示 校內:立即公開
    校外:2005-06-14公開
    QR CODE