| 研究生: |
黃冠霖 Huang, Guan-lin |
|---|---|
| 論文名稱: |
ZnO/GaAs之退火行為研究 Studies of Annealing Effects on ZnO/GaAs |
| 指導教授: |
田興龍
Tyan, Shing-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 砷化鎵 、氧化鋅 |
| 外文關鍵詞: | GaAs, ZnO |
| 相關次數: | 點閱:60 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗使用射頻濺鍍法以氬氣壓力(2.5×〖10〗^(-3)torr)環境下將氧化鋅濺鍍至GaAs(100)基板成長氧化鋅薄膜,而後在相同氧氣壓力(10 torr)下將薄膜分別以退火溫度500℃、600℃、700℃、800℃、900℃做退火處理,最後對樣品做光激發螢光光譜分析,我們發現,ZnO/GaAs 在600℃退火時氫(H)會去填補鋅空缺,並與氧原子形成O-H鍵結,而降低形成施子所需要的能量。當退火溫度700℃以上時,砷化鎵(GaAs)基板中的砷會藉由熱擴散,擴散進氧化鋅薄膜,因此提高了A0X的波峰強度。退火溫度800 ℃以上時,樣品中的氫(H)會開始從樣品逃脫,而造成D0X波峰強度的下降。而D0X跟A0X波峰半高寬皆在退火溫度700℃為最小值,其能隙是最接近純氧化鋅能隙3.445 eV的,故退火溫度700℃為此系列退火溫度中最佳退火溫度。
The zinc oxide thin films were grown on GaAs(100) substrates by radio-frequency sputtering technique. The specimens were then annealed at 500 to 900℃ in oxygen (10 torr) ambient. The annealing effect is investigated by photoluminescence (PL) spectra and scanning electron microscope technique (SEM). From the analysis of PL spectra, we found the PL intensity ratio of D0X/A0X increased to a maximum at 600oC and then decreased, which is attributed to the formation of the O-H bound. The sample annealed at 700℃ shows the narrowest peak width (0.91876 nm ) and the largest D0X activation energy (16.97 meV). The A0X PL intensity increased dramatically due to the diffusion of As from the GaAs substrate at this temperature. For the samples annealed beyond 700°C, the D0X PL intensity decreased because of the evaporation of hydrogen. In addition, the band gap for the sample annealed at 700°C is very close to that of pure ZnO crystal and the optimized annealing temperature 700℃ is then concluded. This is in consistent with the results of SEM measurements.
[1]Xiang Liu,Xiaohua Wu,Hui Cao,and R.P.H Chang“Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced xhemical vapor deposition” J. Appl.Phys.95 3141(2004)
[2]H. Nanto,T.Minami, and S. Takata,Phys. “Photoluminescence in sputtered ZnO thin films”Status Solidi A65,K131(1981).
[3]J. Hu and R.G. Gordon “Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition”J. Appl.Phys.71 2(1992),p.880
[4]Y.Chen,D.M.Bagnall,H.J.Koh,K.T.Park,K.Hiraga,Z.Zhu,and T.Yao“Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire:Growth and characterization”J.Appl.Phys.Vol.84,
3912(1998)
[5]S.O.Kucheyev,J.Biener,Y.M.Wang,T.F.Baumann,K.J.Wu,T.van Buuren, A.V. Hamza, and J.H. Satcher,J.Appl. Phys. Lett.Vol. 86,083108(2005).
[6]Y.J. Xing,Z.H. Xi,X.D. Zhang,J.H. Song,R.M. Wang,J. Xu,Z.Q. Xue,
D.P. Yu,Appl.phys A,80,1527-1530(2005).
[7]D.R. Vij, “Luminescence of Solids”Plenum Press,New York and London,ch3,p95
[8] D.L. Smith,Thin Film Deposition,19 ch.9,P.453.
[9]Ben G.Streetman,Sanjay Banerjee, “Solid state electronic devices
5ed”2002
[10] Jinzhong Wang, “Effect of annealing on the properties
of N-doped ZnO films deposited by RF magnetron
sputtering”,Applied Surface Science 254(2008)7178-7182
[11] B. K. Meyer,H. Alves,D. M. Hofmann, W. Kriegseis, D. Forster,
F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck,and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO” phys. stat. sol. 241, 231 (2004)
[12]J.C. Fan,C.Y. Zhu,S. Fung,Y.C. Zhong,K.S. Wong,Z. Xie,G. Brauer,
W. Anwand,W. Skorupa,C.K. To,B. Yang,C.D. Beling,and C.C.Ling
“Arsenic doped p-type zinc oxide films grown by
Radio frequency magnetron sputtering”J.Appl.Phys.106,
073709(2009)
[13] Y. R. Ryu,T. S. Lee,H.W. White“Properties of arsenic-doped
p-type ZnO grown by hybrid beam deposition” Appl. Phys. Lett.Vol 83(2003)
[14] J.K. Lee, M. Nastasi, D. W. Hamby,D. A. Lucca, “Optical
observation of donor-bound excitons in hydrogen-implanted
ZnO” Appl. Phys. Lett.86, 171102 (2005)
[15] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A.
Voigt, B. E. Gnade, “Mechanisms behind green
photoluminescence in ZnO phosphor powders” American
Institute of Physics. [S0021-8979(96)00810-3](1996)
[16] J. K. Dangbegnon, K. T. Roro, J. R. Botha“Towards p-type
ZnO using post-growth annealing” phys. stat. sol. (a)
205, 155–158 (2008)
[17] K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, C. E.
Stutz ,B. Luo , F. Ren, D. C. Look ,J. M. Zavada “Hydrogen
Incorporation and diffusivity in plasma-exposed bulk ZnO
” Appl. Phys. Lett. Vol 82(2002)
[18] T. Makino, K. Tamura, C. H. Chia,Y. Segawa,M. Kawasaki,
A. Ohtomo, H. Koinuma“Temperature quenching of exciton
luminescence intensity in ZnO/(Mg,Zn)O multiple
quantum wells” J.Appl.Phys.Vol.93(2003)
[19] Lijun Wang,N. C. Giles, “Temperature dependence of the
free-exciton transition energy in zinc oxide by
photoluminescence excitation spectroscopy” J.Appl.Phys.
Vol.94(2003)
[20] W.Y. Liang, A.D. Yoffe,Phys.Rev.Lett.20,59(1968)
校內:2020-12-31公開