| 研究生: |
陳勝捷 Chen, San-Jet |
|---|---|
| 論文名稱: |
薄膜類固醇分子模板之研究 studies of molecular imprinted polymer membrane of steroids |
| 指導教授: |
楊明長
Yang, Ming-chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 184 |
| 中文關鍵詞: | 分子模板 、類固醇 |
| 外文關鍵詞: | steroids, molecular imprinted |
| 相關次數: | 點閱:47 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目的,在導入工業界鑄模之觀念,並透過光聚合方式製作出具有與目標物相同形狀、大小及化學功能性結合位置的高分子模版,並由塊狀研發至薄膜製備方式作為取代固定生物元件之設計策略,因此從聚合方式、單體的選擇、合成的濃度、到模版特性皆為本研究探討重點。
本研究中以液相層析儀偵測吸附液濃度變化,做為模版特性之分析方法。本實驗以睪酮為目標物分子,黃體素為干擾物分子,HEMA、MAA為官能基單體,EGDMA為鎖鍊劑,AIBN為起始劑,探討在不同比例濃度下合成之模版吸附力與選擇性。以MAA單體和薄膜模版為例,來改變合成濃度,由結果得知合成中有添加目標物分子當模印時,模版吸附目標物量選擇性與吸附力有顯著提升。當目標物添加量越多時,其吸附力與選擇性會高到一穩定值。當鎖鍊劑/單體濃度比由0.09提升到3.18時,300ppm目標物濃度之吸附量由52.3ppm提升至78.26ppm,選擇性從1.15提升至7.29,明顯提升吸附值與選擇性。當合成起始劑量在0.01~0.1g時,對模版無太大影響,但超過0.1g時,只些許影響了模版吸附能力。
薄膜模版中當單體由HEMA改變為MAA時,選擇性由2.46提升至4.61。改變吸附液條件中,當吸附液濃度由50ppm逐漸增至300ppm時,模版吸附量由15.26ppm提升至77.963ppm也跟著增加,300ppm吸附液由單獨液改成混合液後,其選擇性由4.6提升至5.88。當目標物由睪酮換成黃體素時,黃體素模版吸附性與選擇性都遠小於睪酮模版。
單體HEMA中當塊狀模版改為薄膜模版時,90mg塊狀模版在3ml吸附液及0.9mg薄膜模版在1ml吸附液裡,其選擇性分別為2.43及2.5,變化不大,然而其吸附量分別為22.31ppm及12.06ppm,以單位重量作比較,則吸附量分別為0.74與11.25μg/mg MIP,單位重量薄膜模版有較佳的吸附性。
由實驗得知在不同吸附液濃度下,其平衡常數 =1.05*10-3ppm-1維持在一穩定值;塊狀模版使用量由60mg提升至90mg時,其平衡常數維持一定值。其平衡常數不受模版使用量、吸附液濃度而有所影響,但會受模版合成條件影響。當目標物由睪酮換成黃體素時其平衡常數值 =1.35*10-4ppm-1小於睪酮模版。
The purpose of this study is to use photo-polymerization to produce a molecularly imprinted polymer with recognition site those shape、size and chemical functional group are the same with the template. The strategy is to replace traditional MIP from bulk to membrane. The choice of polymerization method, monomer species, and concentration of molecularly imprinted polymer, and the properties of molecular imprinted behavior are the key points of the experiment.
In this experiment, we used HPLC that can detect the concentration of the adsorped species for analyzing the properties of the molecularly imprinted polymer. In this report, testosterone, 2-hydroxyethyl methacrylate (HEMA) or (methacylic acid) MAA, ethylene glycol dimethacrylate (EGDMA) and AIBN are the imprinted molecular, functional monomer, cross-linker and initiator, respectively. As the monomer MAA for example, by the addition of template molecule in the synthesizing process, the amount of template adsorbed increased, and the selectivity increased too. The adsorption ability and selectivity were improved with template addition. When more amount of template was added, the adsorption ability and selectivity increased to reach constant value. When the ratio of the amount of cross-linker to the monomer was increased from 0.09 to 3.18, the concentration of 300ppm adsorption solution adsorpted value of template increased from 52.3ppm to 78.3ppm, and the selectivity increased from 1.15 to 7.29. Both adsorption ability and selectivity were improved. When the amount of initiator AIBN from 0.01g to 0.1g, the molecular imprinted has no affect about it. But the amount over 0.1g, it has a little inflection for the molecular imprinted.
When the monomer from HEMA to MAA, the selectivity of molecular imprinted polymer is from 2.46 increased to 4.61. When the concentration of adsorption solution increased from 50 to 300ppm, the amount of adsorption would be increased from 15.3ppm to 77.9ppm, too. When a mixing solution replaced individual adsorption solution, the selectivity improved from 4.6 to 5.88. When the template change from testosterone to progesterone, the adsorption ability of progesterone molecularly imprinted polymer and the selection were much less than the testosterone molecularly imprinted polymer
When the molecular imprinted from bulk style to film style, the amount of 90mg bulk molecular imprinted and 0.9mg film polymer were in the 3ml and 1ml adsorption solution, respectively. The selectivity is about 2.43 and 2.5, that the value is about the same. The adsorption amount is 22.31ppm and 12.06ppm, respectively. If as the same amount of bulk and film polymer in the 1ml adsorption solution, the adsorption amount were increased from 22.31μg/ml to 402 μg/ml, so the film polymer has better adsorption behavior.
The experiment data shows that the equilibrium constant keep a constant 1.05*10-3ppm-1. Increasing the amount of the bulk molecularly imprinted polymer from 60 to 90mg in 3ml adsorption solution also won’t affect equilibrium constant. When the template change from testosterone to progesterone, the equilibrium constant became 1.35*10-4ppm-1, and much less than the testosterone molecularly imprinted polymer.
【1】 O. Ramstrom, Molecular Imprinting Technology- A way to make Artificial Locks for Molecular Keys, http://www.smi.tu-berlin. De/story/MIT.htm (2002).
【2】 R. A. Bartsch, M. Maeda, “Molecular and Ionic Recognition with Imprinted Polymers”, American Chemical Society, ACS Symposium Series 703, Washington, DC, chapter 1-2 (1998).
【3】 M. Madou and J. Florkey, Chem. Rev. 100, 2679 (2000).
【4】 G. S. Wilson and Y. Hu, Chem. Rev. 100, 2693 (2000).
【5】 周澤川,分子模版微感測晶片,http://imu2.ncku.edu.tw/(2002).
【6】 S. Daunert, et al., Chem. Rev.100, 2705 (2000).
【7】 F. L. Dickert, P. Lieberzeit, and M. Tortschanoff, Sensors and Actuators B, 56, 186 (2000).
【8】 G. Vlatakis, L. I. Anderson, R. Muller, and K. Mosbach, Nature, 361, 645 (1993) .
【9】 D. Kriz, O. Ramstrom and K. Mosbach, Analytical Chemistry News & Features 345A-349A (1997).
【10】 D. T. Mcquade, A. E. Pullen, and T. M. Swager, Chem. Rev. 100, 2537(2000).
【11】 D. Kriz, K. Mosbach, Analytica Chima Acta 300, 71(1995).
【12】 P. Turkewitsch, B. Wandelt, G. D. Darling, and W. S. Powell, Anal. Chem. 70, 2025 (1998).
【13】 M. Muratsuqu, S. Kurosawa, H.O. Ghourchian, and N. Kamo, Bunseki Kagaku, 46, 1ss 12, 917(1997).
【14】 C. Malitesta, I. Losito, and P. G. Zambonin, Anal. Chem. 71, 1366 (1999).
【15】 C. Liang, H. Peng, A. Zhou, L. Nie, and S. Yao, Analytica Chimica Acta, 415, 135 (2000).
【16】 J. L. Suarez-Rodriguez and M. E. Diaz-Garcia, Analytica Chimica Acta 405, 67 (2000).
【17】 F. L. Dickert, R. Sikorski, Materials Science and Engineering C 10, 39 (1999).
【18】 Pauling, L; Campbell, D.; “The manufacture of antibodies in vitro”; J. Exper Med; 76, 200 (1942).
【19】 Andersson, L.; Sellergren, G,; Mosbach, K.; “Imprinting of amino acid derivatives in macroporous polymers”; Tetrahedron Lett.; 25, 521 (1984).
【20】 Mayes, A. G.; Mosbach, K.; “Molecularly imprinted polymers; useful materials for analytical chemistry”; Trends Anal. Chem.; 16, 321 (1997).
【21】 Haupt, K.; Mosbach, K.; “Molecularly imprinted polymers and their use in biomimetic sensors”; Chem. Rev.; 100, 2495 (2000)
【22】 Dickert, F. L.; Lieberzeit, P.; Tortschanoff, M.; “Molecular imprints as artifical antibodies-a new generation of chemical sensors”; Sens. Actuator B-Chem.; 65, 186 (2000).
【23】 Ramstrom, O.; Mosbach K.; “Sythesis and catalysis by molecularly imprinted materials” ; Curr. Opin. Chem. Biol.; 3, 759 (1999).
【24】 Ramstrom, O.; Ye, L.; Krook, M.; Mosbach K.; “Application of molecularly imprinted materials as selective adsorbents: emphasis on enzymatic equilibrium shifting and library screening” ; Chromatographia; 47, 465 (1998).
【25】 Amato, I., Science 256, 964-966 (1992).
【26】 Ponnamperuma, C. and Mac Dermott, A. J. Chem. Br. 30, 487-490 (1994).
【27】 US Food and Drug Administration Chirality 4, 338-340 (1992).
【28】 D. Kriz, O. Ramstrom, K. Mosbach, Anal. Chem. 69, A345-A349 (1997).
【29】 P. Turkewitsch, B. Wandelt, G. D. Darling, and W. S. Powell, Anal. Chem. 70, 2025 (1998).
【30】 Wulff,G.; Dederichs, W., Grotstollen, R. and Jupe, C. (1982), “Specific Binding of Substances to Polymers by Fast and Reversible Covalent Interactions” in affinity Chromatography and Related Techniques, 207-216, Elsevier.
【31】 Wulff, G. Pure Appl. Chem. 54, 2093-2102 (1982).
【32】 Ugelstad, J. et al., Prog. Polm. Sci. 17, 87-161 (1992).
【33】 Muldoon, M. T. and Stanker, L. H., J. Agric. Food Chem. 43, 1424-1427 (1995)
【34】 Matsui, J., Miyoshi, Y., Doblhoff-Dier, O. and Takeuchi, T., Anal. Chem. 67, 4404-4408 (1995).
【35】 Pilesky, S. A. et al., Biosens. Bioelectron. 10, 959-964 (1995).
【36】 Siemann. M., Andersson, L. I. and Mosbach, K. L., Agric. Food Chem. 44, 141-145 (1996).
【37】 Vlatakis, G., Andersson, L. I., Muller, R. and Mosbach, K., Nature 361, 645-647 (1993).
【38】 Pohl, H., Derosa, C. and Holler, J. Chemosphere 31, 2437-2454 (1995)
【39】 J. M. Lin, T. Nakagama, K. Uchiyama, T. Hobo, Chromatographia 43, 483 (1994).
【40】 Andersson, L. I. Anal. Chem. 68, 111-117 (1996).
【41】 Kriz, D., Bergren-Kriz, C., Anderssin, L. I. and Mosbach, K. Anal. Chem. 66, 2636-2639 (1994).
【42】 何敏夫;“臨床化學”;合記:台北;p1.;2000
【43】 鶴田楨二,薛敬和,高分子合成反應,高立圖書公司,p1-5 (2001).
【44】 G. Wulff and A. Biffis, Techniques and Instrumentation in Analytical Chemistry volume 23, Elsevier Amsterdam, chapter 4 (2001).
【45】 W. H. Scouten, Solid Phase Biochemistry, John Wiley & Sons, New York, p150 (1983)
【46】 B. Sellergren, Techniques and Instrumentation in Analytical Chemistry volume 23, Elsevier Amsterdam, chapter 5, (2001).
【47】 C. Yu and K. Mosbach, J. Org. Chem., 62, 4057(1997) .
【48】 B. Sellergren, Molecular and Ionic Recognition with Imprinted Polymers, American Chemical Society, Washington, DC, chapter (1998).
【49】 R. J. Sundberg and R. B. Martin, Chem Rev., 74, 471 (1974).
【50】 R. D. Hancock and A.E. Martell, Chem Rev., 89, 1875 (1989).
【51】 V. A. Davankov, In: Complexation Chromatography ( Chromatographic science series), vol. 57, D. Caignant (Ed.), Dekker, New York, p. 197 (1992).
【52】 K. Polborn and K. Severin, Chem. Commun. , 2481 (1999).
【53】 H. Nishide, J. Deguchiand and E. Tsuchida, J. Polym. Sci., Polym. Chem. Ed., 15, 3023 (1977).
【54】 W. Kuchen and J. Schram, Angew. Chem. Int. Ed. Engl., 27, 1695 (1988).
【55】 T.R ling,Y.C. Tsai, T.C. Chou, and C.C. Liu, 2nd International Workshop on Molecularly Imprinted Polymers, La Grand Motte, France, September 16-19th.
【56】 C. Alexander, A. Aherne, MJ. Payne, N. Perez and EN Vulfson, J. Am. Chem. Soc., 118, 8771 (1996).
【57】 Hedborg, E.; Winquist, F.; Lundstrom, I.; Andersson, L.; Mosbach, K.; “Some studies of molecularly-imprinted polymer membranes in combination with field-effect devices”; Sene. Actuator A-phys.;38 ,796 (1993).
【58】 Levi, R.; McNiven, S.; Piletsky, A.; Cheong, S. H.; Yano, Karube, I.; “Optical detection of chloramphenicol using Molecularly imprinted polymers”; Anal. Chem.; 69, 2017 (1997).
【59】 Kriz, D.; Ramstrom, O.; Svensson, A.; Mosbach, K.;”Introducting biomimetic sensors based on molecularly imprinted polymers as recognition elements”; Anal. Chem.; 67, 2142 (1995).
【60】 Pilesky, S. A.; Piletskaya, E. V.; Elgersma, A. V.; Yano, K.; Karube, I.; “Atrazine sensing by molecularly imprinted membranes”; Biosens. Bioelectron.; 10, 959 (1995).
【61】 Piletsky, S. A.; Pileskaya, E. V.; Panasyuk, T. L.; El’skaya, A. V.; Levi, R.; Karube, I.; Wulff, G.; “Imprinted membranes for sensor technology: opposite behavior of covalently and noncovalently imprinted membranes”; Macromolecules; 31, 2137 (1998).
【62】 Kriz, D.; Mosbach, K.; “Competitive amperometric morphine sensor based on an agarose immobilized molecularly imprinted polymer”; Anal. Chim. Acta; 300, 71 (1995).
【63】 Malitesta, C.; Losito, I.; Zambonin, P. G.; “Molecularly imprinted electrosythesized polymers: new materials for biomimetic sensor”; Anal. Chem.; 71, 1366 (1999).
【64】 Kugimiya, A.; Takeuchi, T.; “molecularly imprinted polymer-coated quartz crystal microbalance for detection of bio logical hormone”; Electroanal.; 11, 1158 (1999).
【65】 Ji, H. S.; McNiven, S.; Ikebukuro, K.; Karube, I.; “Selective piezoelectric odor sensors using molecularly imprinted polymers”; Anal. Chim. Acta; 390, 93 (1999).
【66】 Sauerbrey, G.; “Verwendung von schwingquarzen zur wagung dunner schichten und zud mikrowagung”; Z. Phys.; 155, 206 (1959).
【67】 Scatchard G. Ann New York Acad Sci: 51 660 (1949)
【68】 Ganong Wf, REVIEW OF MEDICAL PHYSIOLOGY, 20TH edit, P 415,417-418,425-426
【69】 李昆峰,電聚合鄰苯二胺薄膜之製作與評估其在分子模版感測器之應用,國立成功大學碩士論文,民國九十年