簡易檢索 / 詳目顯示

研究生: 柯政昌
Ker, Cheng-Chang
論文名稱: 磁浮致動器的系統設計、驗證與動態球運動控制系統之應用。
System Design and Verification of Magnetic Suspension Actuatorsin Dynamic Ball Motion Control Applications
指導教授: 王榮泰
Wang, Rong-Tyai
林清一
Lin, Chin E.
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 149
中文關鍵詞: 磁浮避震器磁浮致動器球與桿系統
外文關鍵詞: magnetic suspension vibration absorber, magnetic suspension actuator, Ball and Beam System, Ball and Plate System
相關次數: 點閱:93下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磁浮系統具有無摩擦、無接觸與無噪音的特性,因此而導致於它在高科技工業的發展與應用。因為有這些潛在的優點,本論文討論的焦點鎖定在磁浮致動器的零組件設計,系統的實現及更深入的非線性之動態球運動控制平台的驗證與應用。本磁浮致動器的設計程序從基本的設計概念出發到參數的建立,然後設計出基本的雛型結構以做為電磁模擬的依據;並根據模擬的結果決定建構硬體所需的材料及機械尺寸,最後確定了致動器的規格,並據以加工製造出致動器的模型以供測試及驗證,最後使用閉迴路PID控制器來改善其性能。有了初步的基礎後再重新修正設計規格,重複先前的設計、模擬與驗證步驟製作出另一支結構類似的磁浮避震器,並將它的功能轉化為磁浮致動器以支援後續更高階的研究。利用致動器的精確定位及對外界擾動的調節能力,建構非線性控制系統的實驗平台,用以驗證非線性控制方法,包括經典的球與桿和球與平面的平衡穩定及軌跡追蹤的問題。對於此一非線性系統,在還沒有發展系統的運動方程式之前,選用模糊控制器在球與桿系統中來先期評估這個致動器的性能並得到預期的效果。接著使用兩支相同的致動器以建構測試平台及發展系統的運動方程式,並應用倒階控制器的設計原理發展出適合這兩種不同的非線性控制實驗平台的控制器及其電磁力方程式。幾種不同的平衡穩定及軌跡追蹤實驗也都符合預期的結果,這些結果與理論的推導都獲得相同的驗證。文章最後對未來的改進方法及研究方向提出一些可行性的建議。

    Magnetic suspension system has features of contact-free, friction-free, low contamination and low noise. The characteristics lead to development and application into high technology industries. Based on such potentials, this dissertation focuses a hybrid magnetic suspension actuator in its component design, system implementation and further verification in different nonlinear ball motion control platforms. The development process of the magnetic suspension actuator starts from conceptual design to setup system parameters, then proposes a draft configuration for magnetic field and force simulation to settle hardware material and dimensions, and finally determines specifications of the actuator. According to the simulation results, a hybrid magnetic suspension vibration absorber is fabricated for test and performance verification. A PID controller is implemented to improve the vibration absorber performance. The magnetic suspension actuator has been verified with accurate position control characteristics.
    Using the magnetic suspension actuator, the control system implementations into ball and beam system and ball and plate system have been studied by introducing different control theory. For the serial nonlinear system, a fuzzy controller is used to evaluate the actuator performance prior to system motion equation development to predict system performance. Under the support of Lagrangian theory, the system motion equations can be developed. Based on Lyapunov function and Backstepping controller design procedure, a suitable controller and its electromagnetic force equations are derived and implemented into these two control platforms. Several experiments are carried out to verify the system performance and capability. The test results reveal that the overall characteristics are well controlled in a highly reliable performance.
    In this dissertation, the complete procedure to develop the magnetic suspension system for ball motion control has been demonstrated in details. Both technical practice and theoretical manipulation are developed to support the proposed magnetic suspension operation systems.

    ABSTRACT i 摘要 iii 誌謝 v CONTENTS vi LIST OF TABLES ix LIST OF FIGURES x NOMENCLATURE xiii CHAPTER I INTRODUCTION 1 1.1 Problem Statement 1 1.2 Literature Survey on Magnetic Suspension Actuator 6 1.3 Dissertation Outline 8 CHAPTER II HYBRID MAGNETIC SUSPENSION VIBRATION ABSORBER DESIGN AND IMPLEMENTATION 12 2.1 Introduction 13 2.2 Design Considerations 15 2.3 System Identification and Simulation 19 2.3.1 System Identification 19 2.3.2 Magnetic Loop Simulation 23 2.4 System Analysis and Transfer Function 26 2.5 Controller and Circuit Design 31 2.5.1 Controller and Algorithm 31 2.5.2 Displacement detection and Driving Circuit 37 2.6 Implementation and Verification 40 2.7 Concluding Remarks 42 CHAPTER III DYNAMIC VERIFICATION OF BALL AND BEAM SYSTEM USING FUZZY LOGIC CONTROL 44 3.1 Modification of MS Actuator 44 3.2 Ball and Beam System Platform 46 3.3 Ball and Beam System and Parameter 48 3.3.1 Control System Description 48 3.3.2 Control Feedback and State Variable Measurement 50 3.4 System Analysis 54 3.5 Fuzzy Logic Controller (FLC) 57 3.6 FLC System Performance 63 3.7 Concluding Remarks 68 CHAPTER Ⅳ BACKSTEPPING CONTROL IMPLEMENTATION ON BALL AND BEAM SYSTEM 69 4.1 Introduction 70 4.2 System Apparatus 72 4.3 Control System and Circuit Design 73 4.3.1 Modeling and Identification for MS Actuator 75 4.3.2 State Variable Measurement 77 4.4 Motion Equation 79 4.5 Backstepping Controller Development 83 4.5.1 Brief Discussion of Backstepping Control  83 4.5.2 The Backstepping Controller Design  92 4.6 System Verification           100 4.7 Concluding Remark           104 CHAPTER Ⅴ DESIGN AND IMPLEMENTATION OF BALL AND PLATE SYSTEM USING BACKSTEPPING CONTROLLER           106 5.1 Introduction                107 5.2 System Description            108 5.3 State Variable Measurement       110 5.3.1 System Modeling and Identification   111 5.3.2 State Variable Measurement        112 5.4 System Modeling            117 5.5 Backstepping Controller Design        123 5.6 System Verification             128 5.7 Concluding Remarks             136 CHAPTER VI CONCLUSIONS                  137 6.1 Conclusions                  137 6.2 Further Research and Suggestions     139 REFERENCES                   141 PUBLICATION LISTS                   147 VITA                       149

    [1] C. E. Lin, J. Y. Wang, “An Active Suspension of Linear Oscillatory Actuator Using Eddy Current Sensor,” IEEE Instrumentation and Measurement Technology Conference, Ottawa, Canada, May 19-21, 1997.
    [2] 陳奕宏,“混合式磁浮避震器控制實現,” 國立成功大學航空太空工程學系 碩士論文,民國95年。
    [3] B. V. Jayawnat, Electromagnetic Levitation and Suspension Techniques, Edward Arnold, London, 1981.
    [4] W. G. Hurley and W. H. Walfle, “Electromagnetic Design of a Magnetic Suspension System,” IEEE Trans. on Education, Vol. 40, pp. 124-130, May 1997.
    [5] A. Nabeel, A. Basak, “Electropermanent Suspension System for Acquiring Large Air-gaps to Suspend Loads,” IEEE Trans. on Magnetics, Vol. 31, pp. 4193-4195, Nov. 1995.
    [6] V. A. Oliveira, E. F. Costa, J. B. Vargas, “Digital Implementation of a Magnetic Suspension Control System for Laboratory Experiments,” IEEE Trans. on Education, Vol. 42, pp. 315-322, Nov. 1999.
    [7] D. L. Trumper, S. M. Olson, P. K. Subrahmanyan, “Linearizing Control of Magnetic Suspension Systems,” IEEE Trans. on Control Systems Technology, Vol. 5, pp. 427-437, July 1997.
    [8] D. K. Cheng, Field and Wave Electromagnetics, 2nd Edition, Addison-Wesley, 1989.
    [9] J. P. Den Hartog, Mechanical Vibrations, 4th Edition, McGraw Hill, 1956.
    [10] B. P. Wang, L. Kitis, D. Pilkey, A. Palazzolo, “Synthesis of Dynamic Vibration Absorbers,” ASME Journal of Vibration, Acoustics, Stress and Reliability in Design, V. 107, pp. 161-166, 1985.
    [11] J. N. Juang, “Optimal Design of a Passive Vibration Absorber for a Truss Beam,” AIAA Journal of Guidance Control Dynamics V. 7, pp. 733-738, 1984.
    [12] R. G. Jacquot, “Optimal Dynamic Vibration Absorbers for General Beam Systems,” Journal of Sound and Vibration, V. 60, pp. 535-542, 1978.
    [13] L. Kitis, B. P. Wang, W. D. Pilkey, “Vibration Reduction over a Frequency Range,” Journal of Sound and Vibration, V. 89, pp. 559-569, 1983.
    [14] J. N. Juang, M. Phan, “Robust Controller Designs for Second Order Dynamic System: A Virtual Passive Approach,” AIAA Journal of Guidance Control Dynamics, V. 15, pp. 1192-1198, 1992.
    [15] D. J. Stech, “H2 Approach for Optimally Tuning Passive Vibration Absorbers to Flexible Structures,” AIAA Journal of Guidance Control Dynamics, V. 17, pp. 636-638, 1994.
    [16] R. E. Skelton, B. R. Hanks, M. Smith, “Structure Redesign for Improved Dynamic Response,” AIAA Journal of Guidance Control Dynamics, V. 15, pp. 1272-1278, 1992.
    [17] R. Herzog, “Active versus Passive Vibration Absorbers,” ASME Journal of Dynamic Systems Measurement and Control, V. 116, pp. 367-371, 1994.
    [18] C. E. Lin, H. L. Jou, “Force Model Identification for Magnetic Suspension System via Magnetic Field Measurement,” IEEE Trans. on Instrumentation and Measurement, Vol. 42, pp. 767-771, June 1993.
    [19] A. Vilma, “Digital Implementation of a Magnetic Suspension Control System for Laboratory Experiments,” IEEE Trans. on Education, Vol. 42, pp. 315-322, Nov. 1999.
    [20] T. Nakagawa, “Study of Magnetic Levitation Technique Applied to Steel Plate Production Line,” IEEE Trans. on Magnetics, Vol. 36, pp. 3686-3689, Sep. 2000.
    [21] C. E. Lin, H. L. Jou, Y. R. Sheu, "System Implementation of Instrumentation and Control for Magnetic Suspension Wind Tunnel,” IEEE Instrumentation and Measurement Technology Conference, IMTC'95, April 23-26, 1995, Waltham, MA, USA.
    [22] Cygnal Integrated Products Inc., for C8051F020 Data Sheet, Web: www.silabs.com.
    [23] S. Bennett, Real-time Computer Control: An Introduction, Prentice Hall, New York, 1994, ISBN 0-13-764176-1.
    [24] J. G. Ziegler and N. B. Nichols, “Optimum Settings for Automatic Controllers,” Trans. ASME, V. 64, pp. 759-768, 1942.
    [25] 李允中、王小璠、蘇木春,模糊理論及其應用,全華圖書,台北,2003.
    [26] C. T. Wang and Y. K. Tzeng, “A New Electromagnetic Levitation System for Rapid Transit and High Speed Transportation,” IEEE Transactions on Magnetics, Vol. 30, pp. 4734-4736, 1994.
    [27] K. Nagaya and M. Ishikawa, “A Noncontact Permanent Magnet Levitation Table with Electromagnetic Control and Its Vibration Isolation Method Using Direct Disturbance 110 Cancellation Combining Optimal Regulators,” IEEE Transactions on Magnetics, Vol. 31, pp. 885-896, 1995.
    [28] P. K. Sinha and A. N. Pechev, “Model reference adaptive control of a maglev system with stable maximum descent criterion,” Automatica, Vol. 35, pp. 1457-1465, 1999.
    [29] A. J. Joo and J. H. Seo, “Design and Analysis of the Nonlinear Feedback Linearizing Control for an Electromagnetic Suspension System,” IEEE Trans. on Control Systems Technology , Vol. 5, pp.135-144, 1997.
    [30] G. Wang, Y. Tian, W Hong., H. Jin, “Stabilization and Equilibrium Control of Super Articulated Ball and Beam System,” IEEE Proceedings of the 3rd. World Congress on Intelligent Control and Automation, Vol. 5, pp. 3290-3293, 2000.
    [31] G. L. Ma, S. Li, Q. W. Chen, W. L. Hu, “Switching Control for Ball and Beam System,” IEEE Fifth World Congress on Intelligent Control and Automation, Vol. 2, pp. 1084-1087, June 2004.
    [32] J. Hauser, S. Sastry, P. Kokotovic, “Nonlinear Control via Approximate Input-Output Linearization: the Ball and Beam Example,” IEEE Transactions on Automatic Control, Vol. 37, Issue 3, pp. 392-398, March 1992.
    [33] F. Andreev, D. Auckly, S. Gosavi, L. Kapitanski, A. Kelkar, W. White, “Matching, Linear Systems, and the Ball and Beam,” Automatica, Vol. 38, pp. 2147-2152, Dec. 2002.
    [34] E. P. Dadios, R. Baylon, R. De Guzman, A. Florentino, R. M. Lee, Z. Zulueta, “Vision Guided Ball-Beam Balancing System using Fuzzy Logic,” Industrial Electronics Society, 26th Annual Conference of the IEEE , Vol. 3 , pp. 1973-1978, Oct. 2000.
    [35] R. Olfati-Saber, A. Megretski, “Controller Design for the Beam-and-Ball System,” Proceedings of the 37th IEEE Conference on Decision and Control, Vol. 4, pp. 4555-4560, Dec. 1998.
    [36] M. Krstić, I. Kanellakopoulos, and P. Kokotović, Nonlinear and Adaptive Control Design, John Wiley & Sons, Inc., New York, 1995.
    [37] H. K. Khalil, Nonlinear Systems, 2nd edition, Prentice Hall, Upper Saddle River, N. J., 1996.
    [38] 陳慶全, “非線性系統之適應性Backstepping控制,” 國立臺灣科技大學機械工程系 碩士論文,民國89年。
    [39] J. Zhao and I. Kanellakoulos, “Flexible Backstepping Design for Tracking and Disturbance Attenuation,” International Journal of Robust and Nonlinear Control, Vol. 8, pp. 331 - 348, 1998
    [40] A. Knuplez, A. Chowdhury, R. Svecko, “Modeling and Control Design for the Ball and Plate System,” 2003 IEEE International Conference on Industrial Technology, Vol. 2, pp. 1064-1067, Dec. 2003.
    [41] HUMUSOFT CE151 Ball & Plate Apparatus Users Manual, Web: www.humusoft.cz.
    [42] HUMUSOFT Real Time Toolbox for use with MATLAB Users Manual, Web: www.humusoft.cz.
    [43] N. Yubazaki, Yi Jianqiang, M. Otani, N. Unemura, K. Hirota, “Trajectory Tracking Control of Unconstrained Objects Based on the SIRMs Dynamically Connected Fuzzy Inference Model,” Proceedings of the Sixth IEEE International Conference on Fuzzy Systems, Vol. 2, pp. 609-614, July 1997.
    [44] A. B. Rad, P. T. Chan, Lun Lo Wai, C. K. Mok, “An Online Learning Fuzzy Controller,” IEEE Trans. on Industrial Electronics, Vol. 50, Issue 5, pp. 1016-1021, Oct. 2003.
    [45] Chih-Hsin Tsai, Jing-Sin Liu, Wei-Song Lin, “A Neuro-Fuzzy Logic Controller for Trajectory Tracking of Uncertain Robots,” 1996 IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1929-1934, April 1996.
    [46] G. Pradel, Z. K. Jin, “An Insect-Based Approach to Autonomous Mobile Robot Navigation,” 1993, Proceedings of the IECON '93, International Conference on Industrial Electronics, Control, and Instrumentation, Vol. 3, pp. 1448-1453, Nov. 1993.
    [47] H. M. Tai, “Trajectory tracking using neural networks,” ISCAS '92. Proceedings, 1992 IEEE International Symposium on Circuits and Systems, Vol. 6, pp. 2929 - 2932, May 1992.
    [48] C. E. Lin, C. C. Ker, R. T. Wang, C. L. Chen, “A New Ball and Beam System using Magnetic Suspension Actuator,” IEEE Industrial Electronics Conference, Raleigh, NC, Nov. 7-10, 2005.

    下載圖示 校內:2008-01-09公開
    校外:2010-01-09公開
    QR CODE