簡易檢索 / 詳目顯示

研究生: 王敬懿
Wang, Chin-Yi
論文名稱: 偵測自主性與誘發肌電訊號於功能性電刺激治療的應用
Detection of Volitional and Induced EMG for Functional Electrical Therapy
指導教授: 陳家進
Chen, Jia-Jin
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 42
中文關鍵詞: 峰對峰值混合式動作功能性電刺激治療肌電訊號電刺激干擾抑制器
外文關鍵詞: Peak-to-Peak amplitude, Hybrid activation, EMG, Stimulus artifact suppressor, Functional electrical therapy
相關次數: 點閱:133下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於中風患者患病後,其身體機能損傷會影響日常生活的動作與生活品質。對於下肢不對襯的功能,會造成病患難以產生連續性與順暢的交替動作,例如走路或是騎腳踏車。近來,為了增強患者所殘餘的部分動作,利用電刺激器結合腳踏車運動已被用來做為復健技術。在電刺激過程中,造成有殘存肌力患者之肌肉動作包含兩種來
    源:一是自主性的收縮,另一是由電刺激引發的收縮。此肌肉動作型態即為混合式肌肉運動。本研究的目的是發展一套肌電訊號量測系統,在動態下做功能性電刺激治療時,能夠抑制電刺激造成的干擾,並且藉由訊號處理方式,能夠分離出自主性以及電刺激所產生的肌電訊號系統。所分離出的電刺激所激發的肌電訊號與自主性收縮產生的肌電訊號可分別表是為中風病患由電刺激所引發的力量以及患者殘存動作能力。此外,我們也設計峰對峰值偵測電路用於即時量測由電刺激所誘發肌電訊號的峰對峰值。在初步結果顯示利用訊號處理方式,將未含電刺激干擾之混合肌電訊號分離出自主性與誘發性肌電訊號。在動態下,峰對峰偵測電路可以正確與靈敏地捕捉到誘發性肌電訊號的峰對峰值。此資訊的獲得,對於在混合式肌肉觸發模式下的功能性電刺激腳踏車系統可作為控制規則。這將有助於未來與肢體缺陷相關的研究,包括了中風、未完全脊髓損傷患者以及有著自主動作功能變異之正常老年人。

    Those surviving strokes may be left with physical impairments deeply affecting the
    activities of daily living and quality of life. Patients with asymmetrical lower limb
    functions are difficult to perform continuous and smooth reciprocal movements in the
    lower limb, such as walking and cycling. To enhance residual functions of patients with
    partial motor disorders, electrical stimulation (ES) combined with cycling exercise has
    been utilized as a rehabilitation technology recently. For the limb with residual function,
    during stimulating, muscle contraction is generated from two different excitation sources:
    volitional and external electrical stimulation. This muscle activation is referred as hybrid
    muscle activation. The aim of this study is to develop an EMG recording system, which
    includes the stimulus artifact suppressor and software and hardware implementation for
    extracting volitional and ES-induced EMG signals in dynamic movement during functional
    electrical therapy (FET). The separation of electrically evoked EMG and EMG interference
    can represent the force induced by the electrical stimulation and residual movement ability
    of the stroke subject. In addition, we design Peak-to-Peak (PTP) detector for real-time
    measurement of PTP amplitude of ES-induced EMG. Our pilot results show that signal
    processing can separate volitional and stimulus EMG from artifact-free overall EMG. The
    PTP detector can accurately and sensitively capture PTP value of stimulus-induced EMG during dynamic movement. The information acquired can serve as a training protocol or a
    control strategy for an FES-cycling induced by hybrid muscle activation in future study which therefore would benefit wide ranges of physically handicapped including stroke, incomplete SCI, and able-bodied elderly with varied volitional muscle functions.

    Contents Chinese Abstract………………………………………………………i Abstract ………………………………………………………………ii Content…………………………………………………………………iv List of Tables ………………………………………………………vi List of Figures.........................................vii Chapter 1 Introduction………………………………………………1 1.1 Background…………………………………………………………1 1.2 FES-assisted cycling system...........................2 1.3 Surface EMG for evaluating hybrid muscle activation...4 1.4 Motivations and proposes..............................6 Chapter 2 Materials and Methods …………………………………9 2.1 EMG recording sub-system with stimulus artifact suppressor...........................................10 2.2 Constant current stimulator...............................................12 2.3 Signal processing for separating volitional EMG and stimulus EMG.............................................13 2.4 Hardware implementation for separating volitional EMG and stimulus EMG.........................................14 2.5 Motor-assisted cycling ergometer for testing hybrid muscle activation........................................17 Chapter 3 Results……………………………………………………20 3.1 Validation test of stimulus artifact suppressor......20 3.2 Signal processing to separate volitional and stimulus EMG......................................................22 3.3 Hardware implementation of comb filter...............26 3.4 Hardware implementation of peak-to-peak detection of stimulus EMG......................................................29 3.5 Measurement of stimulus EMG during dynamic movement..31 Chapter 4 Discussion and Conclusion……………………………36 4.1 Discussions..............................................36 4.2 Conclusions and future developments.............................................38 References...............................................40

    [1] Chen H. Y., Chen S. C., Chen J. J., Fu L. L., and Wang Y. L., "Kinesiological and kinematical analysis for stroke subjects with asymmetrical cycling movement patterns.," J Electromyogr Kinesiol., vol. 15, pp. 587-95, 2005.
    [2] Chen J. J., Yu N. Y., Huang D. G., Ann B. T., and C. G. C., "Applying fuzzy logic to control cycling movement induced by functional electrical stimulation.," IEEE Trans Rehabil Eng., vol. 5, pp. 158-69, 1997.
    [3] Chen H. Y., "Clinical Study of Functional Electrical Stimulation Cycling System for Subjects with Asymmetrical Movement Patterns.." vol. Master: National Cheng Kung University, 2001.
    [4] Chen Y. T., "Apply Wireless Communication for FES-Cycling System of In-home Use.." vol. Master: National Cheng Kung University, 2002.
    [5] Hara Y., "Neurorehabilitation with new functional electrical stimulation for hemiparetic upper extremity in stroke patients.," J Nippon Med Sch. , vol. 75, pp. 4-14, 2008.
    [6] Ferrante S., Pedrocchi A., Ferrigno G., and Molteni F., "Cycling induced by functional electrical stimulation improves the muscular strength and the motor control of individuals with post-acute stroke.," Eur J Phys Rehabil Med., vol. 44, pp. 159-67, 2008.
    [7] Langzam E., Nemirovsky Y., Isakov E., and Mizrahi J., "Muscle enhancement using closed-loop electrical stimulation: volitional versus induced torque.," J Electromyogr Kinesiol., vol. 17, pp. 275-84, 2007
    [8] Idsø E. S., Saunders B. A., Duffell L., Johansen T. A., and Hunt K. J., "Quantitative assessment of force distribution for FES cycling," in 11th Annual Conference of the International FES Society Zao, Japan, September 2006.
    [9] Thorsen R., Spadone R., and Ferrarin M., "A pilot study of myoelectrically controlled FES of upper extremity.," IEEE Trans Neural Syst Rehabil Eng., vol. 9, pp. 161-8, 2001.
    [10] Hunt K. J., Stone B., Negård N. O., Schauer T., Fraser M. H., Cathcart A. J., Ferrario C., Ward S. A., and G. S., "Control strategies for integration of electric motor assist and functional electrical stimulation in paraplegic cycling: utility for exercise testing and mobile cycling.," IEEE Trans Neural Syst Rehabil Eng., vol. 12, pp. 89-101, 2004.
    [11] Hines AE., Crago PE., Chapman GJ., and Billian C., "Stimulus artifact removal in EMG from muscles adjacent to stimulated muscles.," J Neurosci Methods., vol. 61, pp. 55-62, 1996.
    [12] O'Keeffe D. T., Lyons G. M., Donnelly A. E., and Byrne C. A., "Stimulus artifact removal using a software-based two-stage peak detection algorithm.," J Neurosci Methods., vol. 109, pp. 137-45, 2001.
    [13] Minzly J., Mizrahi J., Hakim N., and L. A., "Stimulus artefact suppressor for EMG recording during FES by a constant-current stimulator.," Med Biol Eng Comput., vol. 31, pp. 72-5, 1993.
    [14] Frigo C., Ferrarin M., Frasson W., Pavan E., and Thorsen R., "EMG signals detection and processing for on-line control of functional electrical stimulation.," J Electromyogr Kinesiol., vol. 10, pp. 351-60, 2000.
    [15] Langzam E., Isakov E., and Mizrahi J., "Evaluation of methods for extraction of the volitional EMG in dynamic hybrid muscle activation.," J Neuroeng Rehabil., vol. 3, pp. 27-38, 2006.
    [16] Langzam E., Nemirovsky Y., Isakov E., and Mizrahi J., "Partition between volitional and induced forces in electrically augmented dynamic isometric muscle contractions.," IEEE Trans Neural Syst Rehabil Eng., vol. 14, pp. 322-35, 2006.
    [17] Katz A., Tirosh E., Marmur R., and M. J., "Enhancement of muscle activity by electrical stimulation in cerebral palsy: a case-control study.," J Child Neurol. , vol. 3, pp. 259-67, 2008.
    [18] Mizrahi J., Levy M., Ring H., Isakov E., and Liberson A., "EMG as an indicator of fatigue in isometrically fes-activated paralyzed muscles," IEEE Trans Neural Syst Rehabil Eng., vol. 2, pp. 57-65, 1994.
    [19] Tsai C. T., Chan H. L, Tseng C. C., and Wu C. P., "Harmonic Interference Elimination by An Active Comb Filter.," in Proceedings of the 16th Annual International Conference of the IEEE. vol. 2, 1994, pp. 964 -5.
    [20] Chen J. J. and Yu N. Y., "The validity of stimulus-evoked EMG for studying muscle fatigue characteristics of paraplegic subjects during dynamic cycling movement.," IEEE Trans Rehabil Eng., vol. 5, pp. 170-8, 1997.
    [21] Sennels S., Biering-Sørensen F., Andersen O. T., and Hansen S. D., "Functional neuromuscular stimulation controlled by surface electromyographic signals produced by volitional activation of the same muscle: adaptive removal of the muscle response from the recorded EMG-signal.," IEEE Trans Rehabil Eng., vol. 5, pp. 195-206, 1997.

    下載圖示 校內:2010-07-26公開
    校外:2010-07-26公開
    QR CODE