簡易檢索 / 詳目顯示

研究生: 顏德倫
Yen, Te-Lun
論文名稱: 研製1590-nm全光纖被動式Q切換雷射
Study on 1590-nm passively Q-switched all-fiber laser
指導教授: 蔡宗祐
Tsai, Tzong-Yow
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 87
中文關鍵詞: 全光纖被動式Q切換雷射鉺鐿共摻增益光纖1590-nm Q切換雷射
外文關鍵詞: all-fiber laser, 1590-nm Q-switched laser, Er-Yb co-doped gain fiber, self-balanced mechanism
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文重點為利用高功率泵浦系統研製穩定的1590-nm全光纖被動式Q切換脈衝雷射,並藉由實驗及模擬驗證高功率泵浦不適用在單共振腔之Q切換雷射架構,必須加入第二共振腔才能製作穩定Q切換序列脈衝雷射。在雙共振腔雷射系統中,藉著Q切換及增益切換自我平衡機制,形成穩定的Q切換序列脈衝雷射。增益介質採用鉺鐿共摻增益光纖,避免鉺離子高摻雜導致雷射效率降低,同時提高增益介質吸收能力,取得更佳的脈衝特性,可飽和吸收體選用摻銩光纖,在1590 nm波段下,銩元素的吸收截面積大於鉺元素的放射截面積,容易形成Q切換脈衝雷射。想藉由模態場面積不匹配技術改善脈衝特性,卻因為所造成的損耗太大及高摻雜光纖造成高能態離子被激發,可飽和吸收體回復量減少,使得脈衝特性反而變得更差,最後製作出在11.92 W泵浦下脈衝寬度為370 ns、脈衝能量為41.47 µJ、脈衝峰值為112 W、脈衝重覆率為33.76 kHz的穩定Q切換序列脈衝雷射。最後模擬共振腔內參數對脈衝特性的影響,提供未來改善此雷射架構的方向。

    The purpose of this thesis is to demonstrate a stable and high-performance 1590-nm passively Q-switched all-fiber laser using a high-power cladding-pumping system, and we verify that high pump power is not suitable for the single resonant Q-switched laser system by experiments and simulations. There must be double resonators in the Q-switched laser system if we want high output power. In a laser system with double resonators, a stable Q-switched sequential pulse is formed by the Q-switching and gain-switching self-balanced mechanism. Using Er-Yb co-doped gain fiber can avoid the clustering effect caused by high doping concentration of Er, and raise the absorption strength of the gain fiber at the same time. We want to improve the pulse characteristics by the mode-field-area(MFA) mismatch, but the pulse characteristics become worse because of the loss caused by MFA mismatch and the population of higher-order states excited because of the highly doped fiber. Finally, we made a stable Q-switched sequential pulse laser under the 11.92 W pump power with a width of 370 ns, a pulse energy of 41.47 μJ, a pulse peak power of 112 W, and a pulse repetition rate of 33.76 kHz and simulated the effect of changing parameters in the resonators on the pulse characteristics to provide a direction for improving this laser system in the future.

    摘要 I 誌謝 IX 目錄 X 圖目錄 XII 表目錄 XVIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機及方向 2 第二章 Q切換脈衝雷射原理 5 2-1 被動式全光纖Q切換雷射 5 2-2 摻鉺光纖Q切換脈衝雷射 6 2-3 單共振腔被動式Q切換脈衝雷射方程式 8 2-3-1 模態場面積不匹配技術(mode-field-area mismatch) 10 2-3-2 Q切換連續脈衝 12 2-4 雙共振腔被動式Q切換脈衝雷射 13 2-4-1 設置雙共振腔 13 2-4-2 雙共振腔雷射方程式 15 2-4-3 雙共振腔自我平衡Q與增益切換機制分析 16 第三章 單共振腔雷射架構製作及模擬 19 3-1 高功率雷射架構 19 3-1-1 雙批覆層系統(Cladding-pump & double cladding fiber) 19 3-1-2 鉺鐿共摻雙批覆層增益光纖 21 3-2 被動式全光纖Q切換脈衝雷射製作 22 3-2-1 雙批覆層泵浦架構(cladding-pump & double-clad fiber) 22 3-2-2 1590-nm共振腔設置 23 3-2-3 1590-nm脈衝雷射 26 3-3 單共振腔Q切換脈衝雷射模擬 34 第四章 雙共振腔雷射架構製作與模擬 38 4-1 雙共振腔Q與增益切換脈衝雷射模擬 38 4-2 雙共振腔Q與增益切換脈衝雷射製作 49 4-2-1 雙共振腔1590-nm Q切換脈衝雷射製作 49 4-2-2 Q切換脈衝特性之改善 56 第五章 Q切換脈衝特性改善之模擬 66 5-1 泵浦功率對Q切換脈衝特性的影響 67 5-2 可飽和吸收體初始吸收值對Q切換脈衝特性的影響 69 5-3 共振腔反射率對Q切換脈衝特性的影響 71 5-4 共振腔長度對Q切換脈衝特性的影響 75 5-5 增益切換波長對Q切換脈衝特性的影響 78 第六章 結論與未來展望 81 6-1 結論 81 6-2 未來展望 83 參考文獻 84

    [1]Schawlow, A. L., and Townes, C. H., Phys. Rev., 112, 1940 (1958)
    [2]T.H. Maiman, Stimulated Optical Radiation in Ruby, 1960 Nature 187,493-494
    [3]Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications, Optics Express Vol. 12, Issue 21, pp. 5125-5130 (2004)
    [4]John J. ZAYHOWSKI, Passively Q-Switched Microchip Lasers and Applications, J-STAGEトップ,レーザー研究, 26巻, 12号(1998)
    [5]Zhang, Han, et al. "Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker." Applied Physics Letters Vol 95, Issue 14, pp.141103(2009)
    [6]Zhang, Jun, Viktor Fromzel, and Mark Dubinskii. "Resonantly cladding-pumped Yb-free Er-doped LMA fiber laser with record high power and efficiency." Optics Express Vol 19, Issue 6, pp.5574-5578(2011)
    [7]Liu, Jifeng, et al. "Ge-on-Si laser operating at room temperature." Optics letters Vol 35, Issue 5, pp.679-681(2010)
    [8]Fan, Dengfeng, et al. "Passively Q-switched erbium-doped fiber laser using evanescent field interaction with gold-nanosphere based saturable absorber." Optics express Vol 22, Issue 15, pp.18537-18542(2014)
    [9]Kurkov, A. S., et al. "All fiber Er-Tm Q-switched laser." Laser Physics Letters Vol 7, Issue 11, pp. 795(2010)
    [10]Zhan, Huan, et al. "5kW GTWave fiber amplifier directly pumped by commercial 976nm laser diodes." Optics express Vol 24, Issue 24, pp.27087-27095(2016)
    [11]Luo, Zhengqian, et al. "Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser." Optics letters Vol 35, Issue 21, pp.3709-3711(2010)
    [12]Tzong-Yow Tsai, Yen-Cheng Fang, and Shih-Hao Hung, Passively Q-switched erbium all-fiber lasers by use of thulium-doped saturable-absorber fibers, Optics Express Vol. 18, Issue 10, pp. 10049-10054 (2010)
    [13]Siegman,Lasers(University Science Books 1986), pp1024-1028
    [14]D.Zalvidea, N.A.Russo, R.Duchowicz, M.Delgado-Pinar, A.Díez, J.L.Cruz, M.V.Andrés, High-repetition rate acoustic-induced Q-switched all-fiber laser, Optics Communications, Volume 244, Issues 1–6, 3 January 2005, Pages 315-319
    [15]Robert J. Williams, Nemanja Jovanovic, Graham D. Marshall, and Michael J. Withford, All-optical, actively Q-switched fiber laser, Optics Express Vol. 18, Issue 8, pp. 7714-7723 (2010)
    [16]Keming Du, Daijun Li, Hengli Zhang, Peng Shi, Xiaoyu Wei, and Robert Diart, Electro-optically Q-switched Nd:YVO4 slab laser with a high repetition rate and a short pulse width, Optics Letters Vol. 28, Issue 2, pp. 87-89 (2003)
    [17]R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, Passively Q-switched 1.34-µm Nd:YVO4 microchip laser with semiconductor saturable-absorber mirrors, Optics Letters Vol. 22, Issue 13, pp. 991-993 (1997)
    [18]Adrien Aubourg, Julien Didierjean, Nicolas Aubry, François Balembois, and Patrick Georges, Passively Q-switched diode-pumped Er:YAG solid-state laser, Optics Letters Vol. 38, Issue 6, pp. 938-940 (2013)
    [19]Y.-F. ChenY.P. Lan, Comparison between c-cut and a-cut Nd:YVO4 lasers passively Q-switched with a 〖"Cr" 〗^"4+" :YAG saturable absorber
    [20]P. Adel, M. Auerbach, C. Fallnich, S. Unger, H.-R. Müller, and J. Kirchhof, Passive Q-switching by Tm3+co-doping of a Yb3+-fiber laser,Optics Express,Vol. 11,issue 21,pp.2730-2735(2003)
    [21]P. Pérez-Millán, A. Díez, M. V. Andrés, D. Zalvidea, and R. Duchowicz, Q-switched all-fiber laser based on magnetostriction modulation of a Bragg grating, Optics Express Vol. 13, Issue 13, pp. 5046-5051 (2005)
    [22]Tzong-Yow Tsai, Yen-Cheng Fang, Huai-Min Huang, Hong-Xi Tsao, and Shih-Ting Lin, Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm, Optics Express Vol. 18, Issue 23, pp. 23523-23528 (2010)
    [23]Tzong-Yow Tsai and Yen-Cheng Fang, A self-Q-switched all-fiber erbium laser at 1530 nm using an auxiliary 1570-nm erbium laser, Optics Express Vol. 17,Issue 24,pp. 21628-21633(2009)
    [24]Larry R. Marshall, Jeff Kasinski, and Ralph L. Burnham, Diode-pumped eye-safe laser source exceeding 1% efficiency, Optics Letters Vol. 16, Issue 21, pp. 1680-1682 (1991)
    [25]Xiaokang Fan, Peiwen Kuan, Kefeng Li, Lei Zhang, Wentao Li and Lili Hu, A 2 μm continuous wave and passively Q-switched fiber laser in thulium-doped germanate glass fibers, Laser Physics 24 085107(2014)
    [26]Andrei A. Fotiadi, Andrei S. Kurkov, Igor M. Razdobreev, All-fiber passively Q-switched Ytterbium laser, 2005 Conference on Lasers and Electro-Optics Europe
    [27]V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, Yb–Bi pulsed fiber lasers, Optics Letters Vol. 32, Issue 5, pp. 451-453 (2007)
    [28]Tzong-Yow Tsai, Yen-Cheng Fang, Zhi-Cheng Lee, and Hong-Xi Tsao, All-fiber passively Q-switched erbium laser using mismatch of mode field areas and a saturable-amplifier pump switch, Optics Letters Vol. 34, Issue 19, pp. 2891-2893 (2009)
    [29]Tzong-Yow Tsai, Hao-Hsiang Ma, Yen-Cheng Fang, Hong-Xi Tsao, and Shih-Ting Lin, Self-balanced Q- and gain-switched erbium all-fiber laser, AIP Advances 1, 032155 (2011)
    [30]E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B.C. McCollum, DOUBLE CLAD, OFFSET CORE Nd FIBER LASER, OSA Technical Digest Series (Optical Society of America, 1988), paper PD5
    [31]Daniel B. S. Soh, Scott E. Bisson, Brian D. Patterson, and Sean W. Moore, High-power all-fiber passively Q-switched laser using a doped fiber as a saturable absorber: numerical simulations, Optics Letters Vol. 36, Issue 13, pp. 2536-2538 (2011)
    [32]J. L. Wagener, P. F. Wysocki, M. J. F. Digonnet, H. J. Shaw, and D. J. DiGiovanni, Effects of concentration and clusters in erbium-doped fiber lasers, Optics Letters Vol. 18, Issue 23, pp. 2014-2016 (1993)
    [33]J.Nilsson,W.A.Clarkson,R.Selvas,J.K.Sahu,P.W.Turner,S.-U.Alam,A.B.Grudininb, High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers, Optical Fiber Technology Volume 10, Issue 1, January 2004, Pages 5-30

    無法下載圖示 校內:2023-07-17公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE