| 研究生: |
林育佳 Lin, Yu-Chia |
|---|---|
| 論文名稱: |
運用誤差指數異質變異數模型、狀態轉換指數異質變異數及混合模型在史坦普爾500與SPDR價格之預測能力及模擬交易分析 The Predictive Power and Forward Simulation for the S&P500 Index Futures and SPDR Price Based on EC-EGARCH, Regime-Switching-EGARCH and Hybrid Model |
| 指導教授: |
顏盟峯
Yen, Meng-Feng 李宏志 Lee, Hongchu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融研究所 Graduate Institute of Finance |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 遺傳基因演算誤差指數異質變異數混合模型 、誤差指數異質變異數模型 、史坦普爾500指數 、狀態轉換指數異質變異數模型 、向前模擬 、遺傳基因演算狀態轉換指數異質變異數混合模型 |
| 外文關鍵詞: | EC-EGARCH, RS-EGARCH, EC-EGARCHGA, RS-EGARCHGA, Forward Simulation |
| 相關次數: | 點閱:113 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究可分為兩部分。第一部分,主要是比較誤差指數異質變異數模型(EC-EGARCH)、狀態轉換指數異質變異數模型(RS-EGARCH)、遺傳基因演算誤差指數異質變異數混合模型(EC-EGARCHGA)及遺傳基因演算狀態轉換指數異質變異數混合模型(RS-EGARCHGA)在價格的預測能力。第二部分,利用模擬交易檢視投資人在扣除交易成本之後,是否能藉誤差指數異質變異數模型(EC-EGARCH)、狀態轉換指數異質變異數模型(RS-EGARCH)之預測模式在S&P500指數期貨及SPDR指數型基金賺取超額報酬。
誤差指數異質變異數模型,因同時考慮條件平均值與變異數,將會完整地改善在價格的預測能力。而狀態轉換指數異質變異數模型中,假設不同時點的狀態會依照馬可夫鏈的行為而變動,所以必須考慮異質變異數的情況。同時本篇論文結合了傳統的計量模型與遺傳基因演算法(GA),希望藉此來檢視是否有助於改善在價格與波動的預測能力。這在以往文獻中, Lai和Li(2006)發現可提高對每股盈餘的預測能力。
本研究以平均絕對誤差百分比(Mean Absolute Percentage Error, MAPE) 、平均絕對誤差(Mean Absolute Error, MAE)、配對檢定(Paired t Test)及費雪真實檢定(Fisher Exact Test)等檢定法評估四種模型的預測績效。並利用模擬交易檢視投資人在扣除交易成本之後,是否能以S&P500指數期貨及SPDR指數型基金賺取報酬,最後以大樣本的Z檢定超額報酬是否顯著。
This study contains two parts. First of all, the study investigates the effectiveness of various price forecasting models including Error Correction EGARCH model (EC-EGARCH), regime-switching EGARCH model (RS-EGARCH), hybrid model by combining EC-EGARCH with Genetic Algorithms (EC-EGARCHGA) and hybrid model by using combining RS-EGARCH with Genetic Algorithms (RS-EGARCHGA). Second, we use forward simulation to examine whether investors can earn positive excess return net of transaction cost based on predictive value about S&P500 index futures and SPDR index fund by Error Correction EGARCH model (EC-EGARCH), regime-switching EGARCH model (RS-EGARCH).
Since EC-EGARCH model considers both conditional mean and variance at the same time, it can help us predict price more completely. As to the RS-EGARCH model, it relies on different coefficients in each regime to account for the possibility that the financial series may undergo a finite numbers of changes over the sample period. In addition, Genetic Algorithm (GA), is also used in this study to see whether artificial intelligence, GA, can help improve forecasting ability in price level since it has been supported by Lai and Li (2006) in predicting earning per share.
Based on Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), Paired t Test and Fisher Exact Test, we can evaluate which chosen models, EC-EGARCH, RS-EGARCH, EC-EGARCHGA and RS-EGARCHGA, performs best in predicting price. Furthermore, we examine whether the investors can earn significant excess return by Z Test.
Allen, F. and Karjalainen, R. (1999). Using Genetic Algorithms to Find Technical Trading Rules. Journal of Financial Economics, 51, 245~271.
Ane, T. and Ureche-Rangau, L. (2006). Stock market dynamics in a regime-switching asymmetric power GARCH model. International Review of Financial Analysis, 15, 109– 129.
Bauer, A.J. (1994). Genetic Algorithms and Investment Strategies, John Wiley & Sons, NY.
Berndt, E.K., Hall, B.H. and Hausman, J.A. (1974). Estimation inference in nonlinear structural model. Annuals of Economic and Social Measurement, 4, 653-665.
Bollen, N.P.B., Gray, S.F. and Whaley, R.E. (2000). Regime switching in foreign exchange rates : Evidence from currency option prices. Journal of Financial Economics, 94, 239-276.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307-327.
Brooks, C. (2002). Introductory econometrics for finance (Cambridge University Press).
Chatrath, A., Chaudhry, M. and Christie-David, R. (1999). Price discovery in strategically linked markets: The TED spread and constituents. Journal of Derivatives, 6, 77-87.
Chuang, C.C. (2003). International information transmissions between stock index futures and spot markets: The case of futures contracts related to Taiwan index. Journal of Management Sciences, 19, 51-78.
Dickey, D.A. and Fuller, W.A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistics Association, 74, 427-431.
Engle, R. F. and B. S. Yoo., (1987). Forecasting and Testing in Cointegrated System. Journal of Econometrics, 35, 143-159.
Engle, R.F. and Granger, C.W.J. (1987). Co-integration and an Error Correction : representation, estimation and testing. Econometrica, 55, 251-276.
Engle, R.F. and Ng, V.K. (1993). Measuring and testing the impact of news on volatility. Journal of Finance, 48, 1749-1778.
Friedman, B.M. and Laibson, D.I. (1989). Economic implications of extraordinary movements in stock prices. Brookings Papers on Economic Activity, 2, 137-189.
Ghosh, A. (1993). Cointegration and error correction models: intertemporal causality between index and futures prices. The Journal of Futures Markets, 13, 193-198.
Goldberg, D.E. (1989). Genetic Algorithm in Search, Optimization and Machine Learning. Addison-Wesley Publishing Co.
Goldberg, D. E. and Deb, K. (1991). A comparative analysis of selection schemes used in genetic algorithms. Foundations of Genetic Algorithms I, Morgan Kaufmann Publishers, 69-93.
Granger, C.W.J. and Newbold, P. (1974). Spurious regressions in econometrics. Journal of Econometrics, 2, 111–120.
Granger, C.W.J. (1980). Long memory relationships and the aggregation of dynamic models. Journal of Econometrics, 14, 227-238.
Gray, S.F. (1996). Modeling the conditional distribution of interest rates as a regime-switching process. Journal of Financial Economics, 42, 27-62.
Hamilton, J.D. (1988). Rational expectations econometric analysis of changes in regime: An investigation of the term structure of interest rates. Journal of Economic Dynamics and Control, 12, 385-423.
Hamilton, J.D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57, 357- 384.
Hamilton, J.D. (1990). Analysis of time series subject to changes in regime. Journal of Econometrics, 45, 39-70.
Hamilton, J.D. and Susmel, R. (1994). Autoregressive conditional heteroscedasticity and changes in regime. Journal of Econometrics, 64, 307-333.
Hamilton, J.D. (1994). Time series analysis (Princeton University Press, Princeton, N J).
Hansen, P.R. and Lunde, A. (2005). A forecast comparison of volatility models: Does anything beat GARCH(1,1)? Journal of Applied Econometrics, 20, 873-889.
Harris, L. (1989). The October 1987 S&P 500 Stock-Futures Basis. Journal of Finance, 44, 77-99.
Holland, J. (1975). Adaptation in Natural and Artificial System.
Holland, J. (1992). Genetic algorithms. Scientific American, 267, 66-72.
Kawaller, I.G., Koch, P.D. and Koch, T.W. (1993). Intraday market behavior and the extent of feedback between S&P 500 futures prices and the S&P 500 index. Journal of Financial Research, 14, 107-121.
Klaassen, F. (2002). Improving GARCH volatility forecasts with regime-switching GARCH. Empirical Economics, 27, 363-394.
Korczak, J.J. (2001). Portfolio design and simulation using evolution based strategy : University of Worclaw, Poland.
Koutmos, G. and Tucker, M. (1996). Temporal relationships and dynamics interactions between spot and futures stock markets. Journal of Futures Markets, 16, no.1, 55-69.
Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by the means of natural selection. The MIT Press, Cambridge, Massachussets.
Lai, S.C. and Li, H.C. (2006). The predictive power of quarterly earnings per share based on time series and artificial intelligence model. Applied Financial Economics, 16, 1325-1388.
Li, H., Mathur, I., Schwarz, T.V. and Szakmary, A.C. (1994). Dynamic efficiency in the treasury bill and Eurodollar futures markets and implications for the TED spread. Review of Futures Markets, 13 No.1, 259-300.
Li, Jin and Tsang, P.K.E. (1999). Improving technical analysis prediction - An application of genetic programming : University of Essex.
Lien, D. and Lou, X. (1994). Multiperiod hedging in the presence of conditional heteroscedasticity. Journal of Futures Markets, 14, 927-955.
Lien, D. and Tse, Y.K. (2000). Some recent developments in futures hedging. Working Paper, University of Texas at San Antonio.
Neely, C., Weller, P. and Ditmar, R. (1997). Is technical analysis in the foreign exchange market profitable? A genetic programming approach. Journal of Financial and Quantitative Analysis, 32, 405-26.
Neely, C.J. and Weller, P.A. (2002). Predicting exchange rate volatility: genetic programming versus GARCH and riskmetrics. The Federal Reserve Bank of St. Louis.
Nelson, D.B. (1991). Conditional heteroskedasticity in asset returns : A new approach. Econometrica, 59, 2347-370.
Phillips, PCB., P. Perron (1988). Testing for a unit root in time series regressions. Biometrika, 65, 335-346.
Tse, Y. (1999). Price discovery and volatility spillovers in the DJIA index and futures markets. Journal of Futures Market, 19, 911-930.
Whitley, D., Starkweather, T. and Bogart, C. (1990). Genetic algorithm and neural networks: optimizing connections and connectivity, Parallel Computing, 14, 280–311.
Yang, J., Bessler, D.A. and Leatham, D.J. (2001). Asset storability and price discovery in commodity futures markets: A new look. Journal of Futures Markets, 21, 279-300.
Zhang, G., Hu, M.Y., Patuwo B.E. and Indro D.C. (1999). Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis. European Journal of Operational Research, 116, 16-32.
Zhong, M., Darrat, A.F. and Otero, R. (2004). Price discovery and volatility spillovers in index futures markets: Some evidence from Mexico. Journal of Banking & Finance, 28, 3037-3054.