簡易檢索 / 詳目顯示

研究生: 簡世欣
Chien, Shih-Hsin
論文名稱: 熱泳及電泳效應對於複雜波形渠道內強迫對流之粒子沉積的影響
Combined Effects of Thermophoresis and Electrophoresis on Particle Deposition from a Force Convection Flow in a Complex-Wavy Wall Channel
指導教授: 陳朝光
Chen, Cha’o-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 103
中文關鍵詞: 波形表面熱泳電泳座標轉換三次樣線法
外文關鍵詞: wavy surface, thermophoretic, electrophoresis, coordinate transformation, cubic spline
相關次數: 點閱:79下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究分析熱泳和電泳效應對氣膠微粒沈積於複雜波形渠道的影響,渠道的幾何模型為上下對稱的複雜波形壁面,壁面由兩個正弦波合成,分別為基本頻波與相差兩倍頻率的諧波構成,系統流場為二維、不可壓縮及穩態之層流,此外,微粒沈積的傳輸機制則耦合對流、重力沈降、布朗擴散、熱泳及電泳效應,本文將以座標轉換理論推導統制方程式,將不規則邊界展開成一規則的計算平面,並利用三次樣線交換方向定置法(SADI;Spline Alternating-Direction Implicit Method)求得數值解。
    數值結果顯示複雜波形壁面促進了壁面附近的流體流動使熱傳遞過程更有效率,但整體的沉積效率卻略小於平板壁面的沉積效率,熱泳及電泳效應可增強粒子的沉積效應,電場強度越大沉積效率越高,而熱泳效應對大尺寸粒子的影響較顯著,設定上下壁面等溫且為高溫進口流體時,可藉熱泳效應得到較好的粒子沉積效果。

    The effects of thermophoresis and electrophoresis on aerosol particle deposition in a complex-wavy wall channel has been investigate. The geometry model of the channel is an asymmetric complex wall , whose surface is described by two sinusoidal functions, a fundamental wave and its first harmonic wave. The flow is modeled as a two-dimensional
    ,incompressible and steady-state laminar forced convective flow. Moreover, the transport mechanisms of particle deposition by convection, sedimentation, Brownian diffusion, thermophoresis and electrophoresis are coupled. The governing equations are derived with the theory of coordinate transformation. The transformed governing equations can expand the irregular boundary into a calculable regular plane, and then solve it by using the spline alternating-direction implicit method (SADI). Numerical result show that a complex-wall has the capability to promote a correspondingly complicated fluid motion near the surface, which makes more efficient in heat transfer. However, the particle deposition efficiency of the wavy surface would be smaller than the flat surface. The effects of thermophoresis and electrophoresis would increase the particle deposition. The efficiency would be higher with a large electric field intensity. The thermophoretic effect of large-size particles is more significant. Higher particle deposition efficiency would be found when setting the system with high inlet flow temperature and fixed wall temperature.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 V 圖目錄 VI 符號說明 VIII 第一章、緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-3 研究動機 5 1-4 研究方法 6 1-5 本文架構 7 第二章、數值方法 8 2-1 三次樣線函數的發展 8 2-2 三次樣線數學理論 11 2-3 利用三次樣線函數求解偏微分方程式 15 2-4 邊界條件之處理 19 第三章、理論分析 22 3-1 理論模型 22 3-2 數值分析 37 3-3 解題程序 38 第四章、結果與討論 41 4-1 熱泳效應對沉積的影響 42 4-2 簡單波形曲面對沉積的影響 45 4-4 不同系統溫度分布對沉積的影響 51 4-5 電泳效應對波形壁面沉積的影響 53 4-6 耦合電泳效應與熱泳效應對沉積的影響 55 第五章、結論 94 參考文獻 96 自述 103

    [1]. Ahlbrg, J. H., Nilson, E. N. and Walsh, J. L., “The theory of splines and theirapplication,” Academic Press, 1967.
    [2]. Albasiny, E. L. and Hoskins, W. D., “Increase Accuracy cubic spline solutions to two-point boundary value problems,” J. Inst. Math. Applic., Vol. 9, pp. 47-55, 1972.
    [3]. Batchelor, G. K., and Shen, C., “Thermophoretic deposition of particles in gas flowing over cold surfaces,” Journal of Colloid and Interface Science,Vol. 107, pp. 21-37, 1985.
    [4]. Chawla, T. C., Leaf, G. Chen, W. L., and Grolmes, M. A., “The application of the collocation method using hermite cubic spline to nonlinear transient one-dimensional heat conduction problem,” ASME Journal of Heat Transfer, pp. 562-569, 1975.
    [5]. Chen, C. K., “Application of cubic spline collocation method to solve transient heat transfer problem,” Heat Transfer in Thermal Systems Seminar-phase, N.C.K.U., Tainan, Taiwan, pp. 167-182, 1986.
    [6]. Cooper, D. W., Perers, M. N. and Miller, R. J., “Predicted deposition of submicrometer particles due to diffusion and electrostatics in viscous axisymmetric stagnation-point flow,” Aerosol Science and Technology, Vol. 11, pp. 133-143, 1989.
    [7]. Chiu, P. and Chou, H. M., “Free Convection in the Boundary Layer Flow of a Micropolar Fluid along a Vertical Wavy Surface,” Acta Mechanical., Vol. 101, pp. 161-174, 1993.
    [8]. Chiou, M. C“Theoretical predictions and experimental measurements of particle deposition on an isothermal vertical cylinder,” Journal of the Chinese Society of Mechanical Engineers, Vol. 19, pp. 323-333, 1998.
    [9]. Fuchs, N. A., “The Mechanics of Aerosols,” Pergamon Press, Oxford, 1964. Fyfe, D. J., “The use of cubic splines in the solution of two-point boundary value problems,” Computer Journal, Vol. 12, pp. 188-192, 1969.
    [10]. Friedlander, S. K., “Smoke, Dust and Haze: Fundamentals of Aerosol Behavior,” Wiley, New York, 1977. Friedlander, S. K., Fernandez de la Mora, J. and Gokoglu, S. A., “Diffusive leakage of small particles across the dust-free layer near a hot wall,” Journal of Colloid and Interface Science, Vol. 125, pp. 351-355, 1988.
    [11]. Goren, S. L., “Thermophoresis of aerosol particles in the laminar boundary layer on a flat surface,” Journal of Colloid and Interface Science, Vol. 61, pp. 77-85, 1977.
    [12]. Hales, J. M., Schwendiman, L. C. and Horst, T. W., “Aerosol transport in a naturally convected boundary layer,” International Journal of Heat and Mass Transfer, Vol. 15, pp. 1837-1850, 1972.
    [13]. Homsy, G. M., Geyling, F. T. and Walker, K. L., “Blausius series for thermophoresis deposition of small particles,” Journal of Colloid and Interface Science, Vol. 83, pp.495-501, 1981.
    [14]. Hwang, J. and Daily, J. W., “Electric field enhanced deposition inflame-synthesized materials manufacturing,” Journal of Aerosol Science, Vol. 26, pp. 5-18, 1995.
    [15]. Isa, M. and Usmani, R. A., “Quintic spline solution of a boundary value problem,” International Journal of Computer Mathematics, Vol. 11, pp.169-184, 1982.
    [16]. Jain, M. K. and Azia, T., “Spline Function approximation for differential equations,” Journal of Computer Methods in Applied Mechanics and Engineering, Vol. 23, pp. 129-143, 1981.
    [17]. Jain, M. K. and Azia, T., “Cubic spline solution of two-point boundary value problems with significant first derivatives,” Computer Methods in Applied Mechanics and Engineering, Vol. 39, pp. 83-91, 1983.

    [18]. Krinke, T. J., Deppert, K, Magnusson, M. H., Schmidt, F. and Fissan, H., “Microscopic aspects of the deposition of nanoparticlesfrom gas phase,” Journal of Aerosol Science , Vol. 33 ,pp.1341–1359, 2002.
    [19]. Liggett, J. A. and Salmon, J. R., “Cubic spline boundary element,”International Journal for Numerical Methods in Engineering, Vol. 17, pp.543-556, 1981.
    [20]. Malet, J., Alloul, L., Michielsen, N., Boulaud, D., and Renoux, A., “Deposition of nanosized particles in cylindrical tubes under laminar and turbulent flow conditions,” Journal of Aerosol Science, Vol. 31, pp.335–348, 2000.
    [21]. Milne-Thomson, L. M., “Theoretical Hydrodynamics, 5th ed.,”Macmillan, London, 1968.
    [22]. Mills, A. F., Hang, X. and Ayazi, F. “The effect of wall suction and thermophoresis on aerosol-particle deposition from a laminar boundary layer on a flat plate,” International Journal of Heat and Mass Transfer, Vol. 27, pp.1110-1113, 1984.
    [23]. Moulic, G. and Yao, L. S., “Natural convection along a vertical wavy surface with uniform heat flux,” ASME Journal of Heat Transfer, Vol. 111, pp.1106-1108, 1989.
    [24]. Napolitano, M., “Efficient ADI and spline ADI Methods for the steady-state Navier-Stokes equations,” International Journal for Numerical Methods in Fluids, Vol. 4, pp. 1101-1115, 1984.
    [25]. Opiolka, S., Schmidt, F. and Fissan, H., “Combined effects of electrophoresis and thermophoresis on particle deposition onto flat surfaces,” Journal of Aerosol Science, Vol. 25, pp. 665-671, 1994.
    [26]. Peterson, T. W., Stratmann, F. and Fissan, H., “Particle deposition on wafers: a comparison between two modeling approaches,” Journal of Aerosol Science, Vol. 20, pp. 683-693, 1989.
    [27]. Peters, M. H., Cooper, D. W. and Miller, R. J., “The effects of electrostatic and inertial forces on the diffusive deposition of small particles onto large disks:viscous axisymmetric stagnation point flow approximations,” Journal of Aerosol Science, Vol. 20, pp. 123-136, 1989.
    [28]. Peters, M. H. and Cooper, D. W., “The effects of electrostatic forces on thermophoretic suppression of particle diffusional deposition onto hot surfaces,” Journal of Colloid and Interface Science, Vol. 140, pp. 48-56, 1990.
    [29]. Reiyu, C. and Wenyuan, L., “Thermophoretic effects on nano-particle deposition in channel flow,” Heat Mass Transfer, Vol.42, pp. 71-79, 2005.
    [30]. Rubin, S. G. and Graves, R. A., “Viscous flow solution with a cubic spline approximation,” Computers and Fluids, Vol. 1, No. 5, pp. 1-36, 1975.
    [31]. Raggett, G. F., Stone, J. A. R., and Wisher, S. J., “The cubic spline solution of practical problems modeled by hyperbolic partial differential equations,” Computer Methods in Applied Mechanics and Engineering, Vol. 8, pp. 139-151, 1976.
    [32]. Rubin, S. G. and Khosla, P. K., “Higher-order numerical solution using cubic splines,” AIAA Journal, Vol. 14, pp. 851-858, 1976.
    [33]. Rubin, S. G. and Khosla, P. K., “Polynomial interpolation methods for viscous flow calculation,” Journal of Computational Physics, Vol. 24, pp. 217-244, 1977.
    [34]. Reist, P. C., “Aerosol Science and Technology, 2nd ed.,” McGraw-Hill, New York, 1993.
    [35]. Rees, A. S. and Pop, I. “A Note on Free Convection along a Vertical Wavy Surface in a Porous Medium,” ASME Journal of Heat Transfer, Vol. 116, pp. 505-508, 1994.
    [36]. Shaw, D. T., “Fundamentals of Aerosol Science,” Wiley, New York, 1978.
    [37]. Schlichting, H., “Boundary Layer Theory, 7th ed.,” McGraw-Hill, New York, 1979.
    [38]. Stratmann, F., Fissan, H. and Peterson, T. W., “Particle deposition onto a flat surface from a point particle source,” J. Envir. Sci., Vol. 31, pp. 39-41, 1988.
    [39]. Shen, C., “Thermophoretic deposition of particles onto cold surface of bodies in two dimensional and axi-symmetric flows,” Journal of Colloid and Interface Science, Vol. 127, pp. 104-115, 1989.
    [40]. Talbot, L., Cheng, R. K., Scheffer, R. W. and Wills, D. P., “Thermophoresis of particle in a heated boundary layer,” Journal of Fluid Mechanics, Vol.101, pp. 737-758, 1980.
    [41]. Turner, J. R., Liguras, D. K. and Fissan, H. J., “Clean room applications of particle deposition from stagnation flow: electrostatic effects,” Journal of Aerosol Science, Vol. 20, pp. 403-417, 1989.
    [42]. Tsai, R., Chang, Y. P. and Lin, T. Y., “Combined effects of thermophoresis and electrophoresis on particle deposition onto a wafer,” Journal of Aerosol Science, Vol. 29, No. 7, pp. 811-825, 1998.
    [43]. Tsai, R. and Lin, Z. Y., “An approach for evaluating aerosol particle deposition from a natural convection flow onto a vertical flat plate,”Journal of Hazardous Materials, Vol. 69, pp. 217-227, 1999.
    [44]. Tsai, R. and Liang, L. J., “Correlation for thermophoretic deposition of aerosol particles onto cold plates,” Journal of Aerosol Science, Vol. 32, pp. 473-487, 2001.
    [45]. Wanga, P. and Kahawita, R., “A two-dimensional numerical model of estuarine circulation using cubic splines,” Canadian Journal of Civil Engineering, Vol. 10, pp. 116-124, 1983.
    [46]. Wang, P. and Kahawita, R., “Numerical integration of partial differential equations using cubic splines,” International Journal of Computer Mathematics, Vol. 13, No. 3-4, pp. 271-286, 1983.
    [47]. Wang, P., Lin, S., and Kahawita, R., “The cubic spline integration technique for solving fusion welding problems,” Journal of Heat Transfer, Vol. 107, pp. 485-489, 1985.
    [48]. White, F. M., “Viscous Fluid Flow, 2nd ed.,” McGraw-Hill, New York, 1991.
    [49]. Yao, S. A. “Natural convection along a vertical wavy surface,” ASME Journal of Heat Transfer, Vol. 105, pp. 465-468, 1983.
    [50]. Ye, Y., Pui, D. Y. H., Liu, B. Y. H., Opiolka, S., Blumhorst, S. and Fissan, H., “Thermophoretic effect of particle deposition on a free standing semiconductor wafer in a clean room,” Journal of Aerosol Science, Vol. 22, pp. 63-72, 1991.

    下載圖示 校內:2021-01-01公開
    校外:2021-01-01公開
    QR CODE