簡易檢索 / 詳目顯示

研究生: 王維雋
Wang, Wei-Chun
論文名稱: 熱光電系統小型燃燒器搭配迴流管與多孔性介質燃料噴注裝置之混合及火焰穩定性數值模擬與實驗研究
Numerical and Experimental Studies of Mixing and Flame Stability in a Meso-Scale TPV Combustor with a Heat-Regeneration Reverse Tube and a Porous-Medium Injector
指導教授: 洪振益
Hung, Chen-I
趙怡欽
Chao, Yei-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 128
中文關鍵詞: 熱光電系統燃燒數值模擬微型燃燒器多孔性介質熱再生迴流管
外文關鍵詞: Thermophotovoltaic (TPV) system, Combustion, Simulation, Meso-scale combustor, Porous media, Heat-regeneration reverse tube
相關次數: 點閱:127下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究重點主要在發展介觀型熱光電系統(Meso-scale thermophotovoltaic system, TPV)之小型燃燒器研發與應用,其目標主要在改進其低亮度和不完全燃燒的相關問題,本論文重點放在燃燒器的設計與研究上,其燃燒器設計上,運用熱再生迴流管(heat-regeneration reverse tube)和提升空氣與氣態燃料混合之多孔性介質(porous-medium)燃料噴注裝置一起用來改善這些問題;其中,在TPV系統中利用一個遠紅外線陶瓷管(ZrO2)當作輻射器(Emitter),並應用熱再生迴流管的設計,藉此改變流場結構,進而使火焰更貼附於燃燒器壁面以提升輻射器表面溫度,另外,改變熱氣的行進方向來達成再次加熱輻射器壁面,進而使壁面具有更高且均勻的溫度和亮度,因此火燄可以完全被限制在燃燒器中;除此之外,也利用金屬多孔性介質燃料噴注裝置之特性,增加空氣與燃料之混合,進而達到穩住火焰的效果;並引入實驗分析與數值模擬技術對熱光電動力系統之小型燃燒器作深入之研究。
    此外,本文數值模擬主要運用計算流體流動模擬搭配二階(two-step)的化學燃燒反應機制來運算求解,進而從中探討與分析更近一步之空氣-氣態燃料混合場(fuel-air mixing)與火焰穩駐機制(flame stabilization mechanisms)之現象。當燃燒器物理尺度縮小時,因為高面體比(surface-to-volume ratio, S/N)造成火焰與壁面接觸的面積增加,而加強了壁面熱傳效應,也導致冷熄(flame quenching)現象的產生,進而使這些相關之熱管理(thermal conditions)問題變得非常重要,因此本文也運用了數值模擬技術去探討與分析各種不同燃燒器壁面熱傳條件下,例如不同燃燒器壁面之熱傳導系數所造成之相關流場特徵及火燄燃燒現象去探討與分析。其結果證實了小型燃燒器搭配迴流管(heat-regeneration reverse tube)和多孔性介質(porous-medium)燃料噴射裝置會因為熱空氣膨脹擠壓效應和出口渦流強度減少而使管口後火燄內縮且貼附於燃燒器壁面,因此可改善因不完全燃燒和太短的燃氣滯留時間(residence time)所造成輻射器(Emitter)的亮度不均勻或是表面溫度太低的情形,進而可以促進發亮均勻和增加表面溫度而使火燄可完全被限制在燃燒器內。相同地,其數值模擬結果也指出了控制相關氣體流率、熱損失條件及維持恰當的熱管理可持續使火燄在燃燒器內穩定燃燒。因此,藉由實驗與數值模擬結果之分析,可獲得最佳化之相關設計條件及參數,進而增加對此熱光電系統之小型燃燒器的燃燒原理與火焰穩定機制的了解,也提供日後在光熱電(TPV)能源系統的設計參考與選擇。

    In this dissertation, methods for enhancing intensity and uniformity of the combustion chamber wall (emitter) illumination through combustion and thermal management designs of the combustor in a miniature TPV system are proposed, discussed, and demonstrated. The proposed miniature TPV system consists of a swirling combustor with the infrared thermal tube (ZrO2) acting as the emitter, a heat-regeneration reverse tube, and mixing-enhancing porous-medium fuel injection, which improves the low non-uniform illumination or incomplete combustion problems associated with conventional miniature TPV systems. A heat-regeneration reverse tube is used to enforce the swirling flame attaching to the inner wall of the emitter by pushing the swirling recirculation zone (negative axial velocity region) back into the combustor and simultaneously redirecting the exit hot product gas for reheating the outer surface of the emitter. The porous-medium fuel injector is used as a fuel/air mixing enhancer and a flame stabilizer to anchor the flame.
    In addition, the two-step global reaction mechanism was used to compute the chemical reactions of the reacting flows. Experiments and numerical simulations are performed to analyze the details of the flame structure and flame stabilization mechanism inside the meso-scale TPV combustor with and without a reverse tube. Besides, these thermal conditions have strong effects on the combustion especially when the chamber dimension goes smaller and the ratio of surface area to volume (S/V) becomes larger. Enhanced heat loss through the chamber wall to the ambient due to increased S/V ratio, may lead to the thermal quenching of the meso-scale combustor. Therefore, the effect of various heat transfer conditions on chamber wall, e.g. with different wall heat conductivity and combustion chamber dimension size on the combustion are delineated and discussed by numerical simulation. Results indicate that the proposed swirling combustor with a heat-regeneration reverse tube and porous medium can improve the intensity and uniformity of the combustion chamber (emitter) illumination, and can increase the surface temperature of the chamber wall. Correspondingly, the numerical results also indicated that the stable combustion in a meso-scale TPV combustor may be sustained through control of the mass flow rate, heat loss conditions and proper thermal conditions. From the systematic numerical and experimental analysis, suitable operational parameters for the meso-scale TPV combustor are suggested, which may be used as a guideline for meso-scale TPV combustor design.

    Chapter Page 中文摘要 i ABSTRACT iii 誌謝 v CONTENTS vi LIST OF TABLES viii LIST OF FIGURES ix NOMENCLATURE xiii CHAPTER Ⅰ INTRODUCTION 1 1.1 Motivation 1 1.2 Small-Scale TPV Combustors 4 1.2.1 TPV combustor configuration 7 1.2.2 Swirl effects 8 1.3 Numerical Studies of Small Combustion Systems 10 CHAPTER II EXPERIMENTAL AND NUMERICAL ANALYSIS PROCEDURE 14 2.1 Calculation domain and mesh system 14 2.2 Basic Assumptions 16 2.3 Governing equations 16 2.4 Boundary Conditions 19 2.5 Numerical Methods 22 2.6 Experimental Investigation 24 CHAPTER III FLOW STRUCTURES AND MIXING PHENOMENA FOR NON-REACTING FLOW 26 3.1 Validation of the simulation results 26 3.1.1 Experimental methods 27 3.1.2 Fluid structure in the vicinity of combustion chamber exit 28 3.1.3 Comparison of numerical simulation and experimental results 28 3.2 Combustor swirl flow structure: effects of the porous medium 29 3.3 Combustor swirl flow structure: effects of the reverse tube 30 3.4 Mixing and flow characteristics 32 3.5 Summary 32 CHAPTER IV FLAME STABILIZATION MECHANISM 34 4.1 Combustion stability 35 4.2 Flame structures and anchoring position 36 4.3 Mixing and combustion characteristics without a reverse tube 37 4.4 Flame stabilization mechanism: effects of the porous medium 40 4.5 Flame stabilization mechanism: effects of reverse tube 41 4.6 Flame stabilization mechanism: different thermal inputs 43 4.7 Summary 45 CHAPTER V HEAT TRANSFER EFFECTS 47 5.1 Combustion in a combustor with and without porous medium 47 5.1.1 Numerical CO concentration distributions inside the combustor 49 5.2 Combustion in a combustor under heat loss through wall condition 50 5.3 Combustion in a combustor with different wall heat conductivity 52 5.4 Summary 53 CHAPTER VI CONCLUSION 56 References 61 PUBLICATION LIST 126 VITA 128

    Ahn, J., Eastwood, C., Sitzki, L., Ronney, P.D., 2005, “Gas-phase and catalytic combustion in heat-recirculating burners,” Proceedings of the Combustion Institute, vol.30, pp. 2463–2472.

    Al-Abdeli, Y.M., Masri, A.R., 2003, “Stability characteristics and flow fields of turbulent non-premixed swirling flames,” Combustion Theory and Modelling, vol.7, pp. 731–766.

    Amano, T., Yamaguchi, M., 2001, “Analysis of energy balance of electricity and heat generated by TPV generators,” Solar Energy Materials & Solar Cells, vol. 66, pp. 579-583,.

    Beer, J. M. and Chigier, N. A., Combustion Aerodynamics. Applied Science Publishers, Ltd, 1972.

    CFD-ACE_V2004_Modules_Manual_V1.

    Chia, L. C., Feng, B., 2007, “The development of a micropower (micro-thermophotovoltaic) device,” Journal of Power Sources, vol. 165, pp. 455-480.

    Choi, B.-I., Han, Y.-S., Kim, M.-B., Hwang, C.-H. and Oh, C.-B., 2009, “Experiment and numerical studies of mixing and flame stability in a micro-cyclone combustor,” Chemical Engineering Science, vol. 64, pp. 5276-5286.

    Chao, Y. C., Leu, J.H., Hung, Y.F., and Lin, C.K., 1991, “Downstream boundary effects on the spectral characteristics of a swirling flowfield,” Experiments in Fluid, vol. 10, PP. 341-348.

    Claypole, T. C., and Syred, N., 1981, “The effect of swirl burner aerodynamics on NOx formation,” Proceedings of the Combustion Institute, vol.18, pp.81–89.

    Dunn-Rankin D., Leal, E. M., Walther, D. C., 2005, “Personal power system,” Progress in Energy and Combustion Science, vol. 31, pp. 422-465.

    Durisch, W, Bitnar, B., Mayor, J. C., Fritz von Roth, Sigg, H., Tschudi, H. R., Palfinger, G., 2003, “Small self-powered grid-connected thermophotovoltaic prototype system,” Applied Energy, vol. 74, pp. 149-157.

    Durbin, M.D., Vangsness, M.D., Ballal, D.R., Katta, V.R., 1996, “Study of flame stability in a step swirl combustor,” Journal of Engineering for Gas Turbines and Power, vol. 118, no.2, pp. 308–315.

    Dupont, V., Pourkashanian, M., William, A., 1993, “Modeling of process heaters fired by natural gas,” Journal of Industrial Energy, vol.66, pp. 20–28.

    Epstein, A.H., Senturia, S.D., Al-Midani, O., Anathasuresh, G., Ayon, A., Breuer, K., Chen, K-S, Ehrich, F.E., Esteve, E., Frechette, L., Gauba, G., Ghodssi, R., Groshenry, C., Jacobson, S., Kerrebrock, J.L., Lang, J.H., Lin, C-C, London, A., Lopata, J., Mehra, A., Mur Miranda, J.O., Nagle, S., Orr, D.J., Piekos, E., Schmidt, M.A., Shirley, G., Spearing, S.M., Tan, C.S., Tzeng, Y-S, Waitz, I.A., 1997, “Micro-heat engines, gas turbines, and rocket engines—the MIT micro engine project,” AIAA Paper 97-1773. In: 28th AIAA Fluid Dynamics Conference, Snowmass Village, CO, USA, pp. 1–12.

    Federici, J.A., Norton, D.G., Bruggemann, T., Voit, K.W., Wetzel, E.D., Vlachos, D.G., 2006, “Catalytic microcombustors with integrated thermoelectric elements for portable power production,” Journal of Power Source, vol.161, pp. 1469–1478.

    Fernandez-Pello, A. C., 2003, “Micropower generation using combustion: Issues and approaches,” Proceedings of the Combustion Institute, vol. 29, 883-899.

    Hua, J., Wu, M., Kumar, K., 2005, “Numerical simulation of the combustion of hydrogen-air mixture in micro-scaled chamber. Part II: CFD analysis for a micro-combustor,” Chemical Engineering Science, vol.60, pp. 3507–3515.

    Hetsroni, G., Gurevich, M., Rozenblit, R., 2006, “Sintered porous medium heat sink for cooling of high-power mini-devices,” International Journal of Heat and Fluid Flow, vol. 27, pp. 259-266.

    Hwang, C.-H., Oh, C.B., Lee, C.-E., 2009, “Effects of CO2 dilution on the interactions of a CH4-air non premixed jet flame with a single vortex,” International Journal of Thermal Sciences, vol.48, pp. 1423–1431.

    Hwang, M. L., 2009, “Numerical Study of Heat Transfer Enhancement in Porous Medium Devices,” Ph.D. Thesis, Department of Mechanical Engineering. National Cheng Kung University.

    Isomura, K., Murayama, M., Teramoto, S., Hikichi, K., Endo, Y., Togo, S., Tanaka, S., 2006, “Experimental verification of the feasibility of a 100W class micro-scale gas turbine at impeller diameter of 10mm,” Journal of Micromechanics and Micro-Engineering, S254–S261.

    Ishizuka, S., 1984, “On the behavior of premixed flames in a rotating flow field: establishment of tubular flames.” Proceedings of the Combustion Institute, vol.20, pp.287–294.

    Ju, Y., and Xu, B., 2005, “Theoretical and experimental studies on mesoscale flame propagation and extinction,” Proceedings of the Combustion Institute, vol. 30, pp. 2445-2454.

    Kaplan, M. and Hall, M. J., 1995, “The combustion of liquid fuels within a porous media radiant burner,” Experimental Thermal and Fluid Science, vol. 11, pp. 13-20.

    Karagiannidis, S., Mantzaras, J., Jackson, G., Boulouchos, K., 2007, “Hetero-/homogeneous combustion and stability maps in methane-fueled catalytic microreactors,” Proceedings of the Combustion Institute, vol. 31, pp. 3309-3317.

    Kyritsis, D. C., Coriton, B., Faure, F., Roychoudhury, S., and Gomez, A., 2004, “Optimization of a catalytic combustor using electrospray liquid hydrocarbons for mesoscale power generation,” Combustion and Flame, vol. 139, pp. 77-89.

    Kim, N.I., Kato, S.K., Kataoka, T., Yokomori, T., Maruyama, S., Fujimori, T., Maruta, K., 2005, “Flame stabilization and emission of small swiss-roll combustors as heaters,” Combustion and Flame, vol.141, pp. 229–240.

    Karagiannidis, S., Mantzaras, J., Jackson, G., Boulouchos, K., 2007, “Hetero-/homogeneous combustion and stability maps inmethane-fueled catalytic microreactors,” Proceedings of the Combustion Institute, vol. 31, pp.3309–3317.

    Kaisare, N.S., Vlachos, D.G., 2007, “Optimal reactor dimensions for homogeneous combustion in small channels,” Catal. Today , vol.120, pp.96–106.

    Li, J., Chou, S.K., Li, Z.W., Yang, W.M., 2008, “A comparative study of H2–air premixed flame in micro combustors with different physical and boundary conditions,” Combust. Theory Model, vol. 12, pp.325–347.

    Li, J., Chou, S.K., Li, Z.W., Yang, W.M., 2009, “A numerical study on premixed micro-combustion of CH4-air mixture: Effects of combustor size, geometry and boundary conditions on flame temperature,” Chemical Engineering Journal, vol. 150, pp. 213-222.

    Li, Y. H., Lien, Y. S., Chao, Y. C., Dunn-Rankin, D., 2009, “Performance of a mesoscale liquid fuel-film combustion-driven TPV power system,” Progress in Photovoltaics: Research and applications, vol. 17, pp. 327-336.

    Li, Y. H., Li, H. Y., Dunn-Rankin, D., Chao, Y. C., 2009, “Enhancing Thermal and Electrical Efficiencies of a Miniature Combustion-Driven TPV System,” Progress in Photovoltaics: Research and applications, vol. 17, pp. 502-512.

    Li, Y. H., 2007, “Development of a Meso-Scale Fuel-Flim Combustor with Central-Porous Fuel Inlet,” Ph.D. Thesis, Institute of Aeronautics and Astronautics . National Cheng Kung University.

    Norton, D. G., Vlachos, D. G., 2005, “Hydrogen assisted self-ignition of propane/air mixtures in catalytic microburners,” Proceedings of the Combustion Institute, vol. 30, pp. 2473-2480.

    Norton, D. G., Vlachos, D. G., 2004, “A CFD study of propane/air microflame stability,” Combustion and Flame, vol.138, pp.97–107.

    Norton, D. G., Vlachos, D. G., 2003, “Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures”, Chemical Engineering Science, vol. 58, pp. 4871-4882.

    Pescovitz D., 2002, “The power of small technology”, Small Times, vol. 2, no.1, pp. 21.

    Posthill, J., Reddy, A., Siivola, E., Krueger, G., Mantini, M., Thomas, P., 2005, “Venkatasu bramanian, R., Portable power sources using combustion of butane and thermoelectrics,” International Conference on Thermoelectrics, pp. 517–520.

    Patankar, S.V., 1980, “Numerical Heat Transfer and Fluid Flow,” McGraw-Hill, Hemisphere, New York,.

    Qiu, K., Hayden, A. C. S., 2007, “Thermophotovoltaic power generation systems using natural gas-fired radiant burners,” Solar Energy Materials & Solar Cells, vol. 91, pp. 588-596.

    Raimondeau, S., Norton, D., Vlachos, D.G., Masel, R.I., 2002, “Modeling of hightemperature microburners,” Proceedings of the Combustion Institute, vol.29, pp.901–907.

    Schaevitz, S.B., 2001, “Franz, A.J., Jensen, K.F., Schmidt, M.A., A combustion-based MEMS thermoelectric power generator,” Eleventh International Conference on Solid-State Sensors and Actuators, Munich, Germany, pp. 10–14.

    Schefer, R. W., 2003, “Hydrogen enrichment for improved lean flame stability,” International Journal of Hydrogen Energy, vol. 28, pp. 1131-1141.

    Spadaccini, C.M., Mehra, A., Lee, J., Zhang, X., Lu
    kachko, S.,Waitz, A.I., 2003, “High power density silicon combustion system for micro gas turbine engines,” Journal of Engineering for Gas Turbines and Power, vol.125, pp.709–719.

    Syred, N., Beer, J.M., 1974, “Combustion in swirling flows: a review,” Combustion and Flame, vol.23, pp. 143–201.

    Vican, J., Gajdeczko, B.F., Dryer, F.L., Milius, D.L., Aksay, I.A., Yetter, R.A., 2002, “Development of a microreactor as a thermal source for microelectro mechanical systems power generation,” Proceedings of the Combustion Institute, vol.29, pp. 909–916.

    Wang, W.C., Hung, C.I., and Chao, Y.C., 2009, “Cold flow simulation of a meso-scale combustor for personal power system,” The 7th Asia-Pacific Conference on Combustion, Taipei, Taiwan.

    Wang, W.C., Li, Y.H., Hung, C.I., Chao, Y.C., 2010, “Numerical investigation on the non-reacting flow structures and mixing in a meso-scale TPV combustor with a reverse tube and a porous medium injector,” Journal of Aeronautics, Astronautics and Aviation, Series A, vol. 42, no. 2, pp. 131-140.

    Wang,W.C., Hung, C.I., Chao,Y.C., 2012, “Numerical Studies of the Combustion of Methane-Air Mixture in a Meso-Scale Combustor with a Heat-Regeneration Reverse Tube and a Porous-Medium Injector Applied in Thermophotovoltaic Power System, ” Journal of the Chinese Society of Mechanical Engineers, vol. 33, no. 2, pp. 149-160.

    Wang,W.C., Hung, C.I., Chao,Y.C., 2014, “Numerical and Experimental Studies of Mixing Enhancement and Flame Stabilization in a Meso-Scale TPV Combustor with a Porous-Medium Injector and a Heat-Regeneration Reverse Tube, ” Heat Transfer Engineering, vol. 35, Issue 1.

    Weigand, P., Meier, W., Duan, X.R., Stricker, W., Aigner, M., 2006, “Investigations of swirl flames in a gas turbine model combustor, I. Flow field, structures, temperature, and species distributions,” Combustion and Flame, vol.144, pp. 205–224.

    Weinberg, F.J., Rowe, D.M., Min, G., Ronney, P.D., 2002, “On thermoelectric power conversion from heat recirculating combustion systems,” Proceedings of the Combustion Institute, vol.29, pp. 941–947.

    Weigand, P., Meier, W., Duan, X.R., Stricker, W., Aigner, M., 2006, “Investigations of swirl flames in a gas turbine model combustor, I. Flow field, structures, temperature, and species distributions,” Combustion and Flame, vol.144, pp. 205–224.

    Wu, M.H, Wang, Y., Yang, V., Yetter, R.A., 2007, “Combustion in meso-scale vortex chambers,” Proceedings of the Combustion Institute, vol. 31, pp. 3235-3242.

    Yang W.M., Chou S.K., Shu C., Li Z.W., Xue H., 2002, “Development of microthermophotovoltaic system,” Applied Physics Letters, vol.81, pp.5255–5257.

    Yang W.M., Chou S.K., Shu C., Xue H., Li Z.W., 2004, “Development of a prototypemicro-thermophotovoltaic power generator,” Applied Physics Letter, vol.37, pp.1017–1020.

    Yuasa, S., Oshimi, K., Nose, H., Tennichi, Y., 2005, “Concept and combustion characteristics of ultra-micro-combustors with premixed flame,” Proceedings of the Combustion Institute, vol. 30, pp.2455–2462.

    Zhang, Y., Shimokuri, D., Mukae, Y. and Ishizuka, S., 2005, “Flow field in swirl-type tubular flame burner,” JSME International Journal, Series B, vol.48, no.4, pp.830–838.

    下載圖示 校內:2013-12-07公開
    校外:2013-12-07公開
    QR CODE