| 研究生: |
吳仲恩 Wu, Zhong-En |
|---|---|
| 論文名稱: |
冷燒結技術穩定/固化飛灰中重金屬之研究 Stabilization/Solidification of Municipal Solid Waste Incineration Fly Ash via Cold Sintering Process |
| 指導教授: |
申永輝
Shen, Yun-Hwei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 190 |
| 中文關鍵詞: | 焚化飛灰 、冷燒結技術 、重金屬固化 、資源化 、田口方法 |
| 外文關鍵詞: | MSWI fly ash, cold sintering process, heavy metal solidification, resource utilization, Taguchi method |
| 相關次數: | 點閱:253 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
都市廢棄物在焚化後所產生的飛灰(MSWI FA)在近年來對於台灣這片土地的影響逐年上升。現階段採用的穩定/固化方式會導致體積大幅膨脹,需要更多的空間進行放置,且穩定/固化後的飛灰無法再進行進一步的資源化利用。飛灰當中主要由鈣、矽化合物所構成,同時還包含重金屬、氯鹽、硫酸鹽、有機污染物等複雜成分,如何有效克服這些內部有害物質帶來的影響,將是飛灰資源化最大的挑戰。本次研究重點將聚焦於冷燒結技術是否能夠有效固化飛灰當中的指標重金屬,並探討其中的運作機制。
本研究將使用城西焚化廠之焚化飛灰作為研究對象,在經過烘乾、球磨、過篩後進行XRF、王水消化、XRD、SEM、雷射粒徑、熱重分析。並利用田口式直交表進行冷燒結技術二水準、四水準之L16直交表實驗,實驗因子包含溫度、壓力、時間、液體添加比例、碳酸鈉添加比例。二水準L16直交表實驗為探討因子間交互作用情形,四水準L16直交表實驗為探討最佳冷燒結技術固化飛灰的最佳條件。實驗結果表明在溫度300℃、單軸壓力10T (312 MPa)、時間60 mins、液體(水)添加25 wt%、碳酸鈉添加9 wt%下所製備出來的飛灰塊材與飛灰原樣TCLP結果相比能夠有效減少溶出鎘(Cd) 77.71%、鉛(Pb) 21.14%、鋅(Zn)42.37%、鉻(Cr) 99.99%。
飛灰最佳條件冷燒結塊材XRD結果相較於飛灰原樣多出了鈣長石、鈉柱石、矽酸鈣、水鈣鋁榴石等二次相,並將重金屬固化於其中。SEM-EDS結果顯示部分重金屬會在冷燒結過程中受到液體由內而外蒸發影響被攜帶至塊材表面,間接導致固化效果不如預期。
To investigate the effects of various factors on the solidification of fly ash using cold sintering process, the Taguchi orthogonal array L16 design was employed to conduct two-level and four-level L16 orthogonal array experiments. The experimental factors included temperature, pressure, time, liquid-to-solid ratio, and sodium carbonate addition.
The two-level L16 orthogonal array experiment was conducted to assess the interaction between factors, while the four-level L16 orthogonal array experiment was conducted to determine the optimal conditions for solidifying fly ash using cold sintering process. The results of the experiments showed that fly ash under the conditions of a temperature of 300℃, uniaxial pressure of 10T (312 MPa), a holding time of 60 minutes, 25 wt% water addition, and 9 wt% sodium carbonate addition could effectively reduce the leaching of cadmium by 77.71%, lead by 21.14%, zinc by 42.37%, and chromium by 99.99%, as compared to the original fly ash TCLP results.
Compared to the original fly ash, the XRD results of the fly ash ceramic bulk under the optimal conditions showed the presence of secondary phases, such as anorthite, marilite , calcium silicate, and hydrogrossular. These phases effectively immobilized the heavy metals in the fly ash.
However, SEM-EDS results indicated that some heavy metals were carried to the surface of the fly ash bulk during the cold sintering process due to the evaporation of liquid from the inside out. This may have indirectly affected the solidification efficiency, which was lower than expected.
1. TEPA. 2007; Available from: http://www.epa.gov.tw.
2. Huang, C.-M., et al., The potential of recycling and reusing municipal solid waste incinerator ash in Taiwan. Waste Management, 2006. 26(9): p. 979-987.
3. Weichenthal, S., et al., The impact of a landfill fire on ambient air quality in the north: A case study in Iqaluit, Canada. Environmental Research, 2015. 142: p. 46-50.
4. Kamal, N.L.M., et al., Immobilization of Heavy Metals for Building Materials in the Construction Industry – an Overview. Materials Today: Proceedings, 2019. 17: p. 787-791.
5. Sajwan, K.S., T. Punshon, and J. Seaman, Production of coal combustion products and their potential uses, in Coal combustion byproducts and environmental issues. 2006, Springer. p. 3-9.
6. Kirkelund, G.M., L. Skevi, and L.M. Ottosen, Electrodialytically treated MSWI fly ash use in clay bricks. Construction and Building Materials, 2020. 254: p. 119286.
7. 行政院環保署. 垃圾焚化營運年報. 2020.
8. Lin, S.-L., et al., Ultra-low PCDD/F emissions and their particle size and mass distribution in a hazardous waste treatment system. Journal of Hazardous Materials, 2022. 423: p. 127032.
9. Ren, P., K.H. Mo, and T.-C. Ling, Chapter 10 - Stabilization/solidification of municipal solid waste incineration fly ash, in Low Carbon Stabilization and Solidification of Hazardous Wastes, D.C.W. Tsang and L. Wang, Editors. 2022, Elsevier. p. 141-156.
10. Zhang, J., et al., A novel approach for preparing glass ceramic foams from MSWI fly ash: foaming characteristics and hierarchical pore formation mechanism. Journal of Materials Research and Technology, 2022. 18: p. 731-744.
11. Fan, C., et al., A comparative study on solidification/stabilization characteristics of coal fly ash-based geopolymer and Portland cement on heavy metals in MSWI fly ash. Journal of Cleaner Production, 2021. 319: p. 128790.
12. del Valle-Zermeño, R., et al., Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material. Waste Management, 2013. 33(3): p. 621-627.
13. Zhang, H.Y. Analysis of macro-performance of FA ceramic brick. in Advanced Materials Research. 2014. Trans Tech Publ.
14. Giro-Paloma, J., J. Formosa, and J.M. Chimenos, Granular material development applied in an experimental section for civil engineering purposes. Applied Sciences, 2020. 10(19): p. 6782.
15. Huang, B., et al., Recent progress on the thermal treatment and resource utilization technologies of municipal waste incineration fly ash: A review. Process Safety and Environmental Protection, 2022. 159: p. 547-565.
16. Xu, L., et al., Status and Development Trend of Harmless and Resourceful Disposal of Municipal Solid Waste Incineration Fly Ash. Adv. Environ. Prot., 2017. 7: p. 414-422.
17. Zhang, Y., et al., Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives. Journal of Hazardous Materials, 2021. 411: p. 125132.
18. De Boom, A. and M. Degrez, Belgian MSWI fly ashes and APC residues: a characterisation study. Waste management, 2012. 32(6): p. 1163-1170.
19. Wongsa, A., et al., Use of municipal solid waste incinerator (MSWI) bottom ash in high calcium fly ash geopolymer matrix. Journal of Cleaner Production, 2017. 148: p. 49-59.
20. Phua, Z., et al., Characteristics of incineration ash for sustainable treatment and reutilization. Environmental Science and Pollution Research, 2019. 26.
21. Chandler, A.J., et al., Municipal solid waste incinerator residues. 1997: Elsevier.
22. Mangialardi, T., Disposal of MSWI fly ash through a combined washing-immobilisation process. Journal of Hazardous Materials, 2003. 98(1-3): p. 225-240.
23. Chen, L., et al., Sustainable stabilization/solidification of municipal solid waste incinerator fly ash by incorporation of green materials. Journal of Cleaner Production, 2019. 222: p. 335-343.
24. Liu, Z., et al., Ash fusion characteristics of bamboo, wood and coal. Energy, 2018. 161: p. 517-522.
25. Tang, P., et al., Immobilization of hazardous municipal solid waste incineration fly ash by novel alternative binders derived from cementitious waste. Journal of hazardous materials, 2020. 393: p. 122386.
26. Cristelo, N., et al., Recycling municipal solid waste incineration slag and fly ash as precursors in low-range alkaline cements. Waste Management, 2020. 104: p. 60-73.
27. Su, X., et al., Evaluation of a flue gas cleaning system of a circulating fluidized bed incineration power plant by the analysis of pollutant emissions. Powder Technology, 2015. 286: p. 9-15.
28. Zhang, M., et al., Stabilization of heavy metals in MSWI fly ash with a novel dithiocarboxylate-functionalized polyaminoamide dendrimer. Waste Management, 2020. 105: p. 289-298.
29. Belevi, H. and H. Moench, Factors determining the element behavior in municipal solid waste incinerators. 1. Field studies. Environmental science & technology, 2000. 34(12): p. 2501-2506.
30. Morf, L.S., P.H. Brunner, and S. Spaun, Effect of operating conditions and input variations on the partitioning of metals in a municipal solid waste incinerator. Waste Management and Research, 2000. 18(1): p. 4-15.
31. Srum, L., F. Frandsen, and J. Hustad, On the fate of heavy metals in municipal solid waste combustion. Part I. devolatilisation of heavy metals on the grate [J]. Fuel, 2003. 82(18): p. 2273-2283.
32. Wu, L., et al., Emission and control characteristics for incineration of Sedum plumbizincicola biomass in a laboratory-scale entrained flow tube furnace. International journal of phytoremediation, 2013. 15(3): p. 219-231.
33. Zhang, Y., et al., Experimental and thermodynamic investigation on transfer of cadmium influenced by sulfur and chlorine during municipal solid waste (MSW) incineration. Journal of Hazardous Materials, 2008. 153(1-2): p. 309-319.
34. Sharifikolouei, E., et al., Vitrification of municipal solid waste incineration fly ash: An approach to find the successful batch compositions. Ceramics International, 2021. 47(6): p. 7738-7744.
35. Zhang, Z., et al., Stabilization/solidification of municipal solid waste incineration fly ash via co-sintering with waste-derived vitrified amorphous slag. Waste Management, 2016. 56: p. 238-245.
36. Quina, M.J., J.C. Bordado, and R.M. Quinta-Ferreira, Treatment and use of air pollution control residues from MSW incineration: An overview. Waste Management, 2008. 28(11): p. 2097-2121.
37. Chen, Z., et al., Fate of heavy metals during co-disposal of municipal solid waste incineration fly ash and sewage sludge by hydrothermal coupling pyrolysis process. Waste management, 2020. 109: p. 28-37.
38. 胡艳军, 方., 严密, 水热法稳定垃圾焚烧飞灰重金属研究. 浙江工业大学学报, 2018: p. 192-198.
1. TEPA. 2007; Available from: http://www.epa.gov.tw.
2. Huang, C.-M., et al., The potential of recycling and reusing municipal solid waste incinerator ash in Taiwan. Waste Management, 2006. 26(9): p. 979-987.
3. Weichenthal, S., et al., The impact of a landfill fire on ambient air quality in the north: A case study in Iqaluit, Canada. Environmental Research, 2015. 142: p. 46-50.
4. Kamal, N.L.M., et al., Immobilization of Heavy Metals for Building Materials in the Construction Industry – an Overview. Materials Today: Proceedings, 2019. 17: p. 787-791.
5. Sajwan, K.S., T. Punshon, and J. Seaman, Production of coal combustion products and their potential uses, in Coal combustion byproducts and environmental issues. 2006, Springer. p. 3-9.
6. Kirkelund, G.M., L. Skevi, and L.M. Ottosen, Electrodialytically treated MSWI fly ash use in clay bricks. Construction and Building Materials, 2020. 254: p. 119286.
7. 行政院環保署. 垃圾焚化營運年報. 2020.
8. Lin, S.-L., et al., Ultra-low PCDD/F emissions and their particle size and mass distribution in a hazardous waste treatment system. Journal of Hazardous Materials, 2022. 423: p. 127032.
9. Ren, P., K.H. Mo, and T.-C. Ling, Chapter 10 - Stabilization/solidification of municipal solid waste incineration fly ash, in Low Carbon Stabilization and Solidification of Hazardous Wastes, D.C.W. Tsang and L. Wang, Editors. 2022, Elsevier. p. 141-156.
10. Zhang, J., et al., A novel approach for preparing glass ceramic foams from MSWI fly ash: foaming characteristics and hierarchical pore formation mechanism. Journal of Materials Research and Technology, 2022. 18: p. 731-744.
11. Fan, C., et al., A comparative study on solidification/stabilization characteristics of coal fly ash-based geopolymer and Portland cement on heavy metals in MSWI fly ash. Journal of Cleaner Production, 2021. 319: p. 128790.
12. del Valle-Zermeño, R., et al., Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material. Waste Management, 2013. 33(3): p. 621-627.
13. Zhang, H.Y. Analysis of macro-performance of FA ceramic brick. in Advanced Materials Research. 2014. Trans Tech Publ.
14. Giro-Paloma, J., J. Formosa, and J.M. Chimenos, Granular material development applied in an experimental section for civil engineering purposes. Applied Sciences, 2020. 10(19): p. 6782.
15. Huang, B., et al., Recent progress on the thermal treatment and resource utilization technologies of municipal waste incineration fly ash: A review. Process Safety and Environmental Protection, 2022. 159: p. 547-565.
16. Xu, L., et al., Status and Development Trend of Harmless and Resourceful Disposal of Municipal Solid Waste Incineration Fly Ash. Adv. Environ. Prot., 2017. 7: p. 414-422.
17. Zhang, Y., et al., Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives. Journal of Hazardous Materials, 2021. 411: p. 125132.
18. De Boom, A. and M. Degrez, Belgian MSWI fly ashes and APC residues: a characterisation study. Waste management, 2012. 32(6): p. 1163-1170.
19. Wongsa, A., et al., Use of municipal solid waste incinerator (MSWI) bottom ash in high calcium fly ash geopolymer matrix. Journal of Cleaner Production, 2017. 148: p. 49-59.
20. Phua, Z., et al., Characteristics of incineration ash for sustainable treatment and reutilization. Environmental Science and Pollution Research, 2019. 26.
21. Chandler, A.J., et al., Municipal solid waste incinerator residues. 1997: Elsevier.
22. Mangialardi, T., Disposal of MSWI fly ash through a combined washing-immobilisation process. Journal of Hazardous Materials, 2003. 98(1-3): p. 225-240.
23. Chen, L., et al., Sustainable stabilization/solidification of municipal solid waste incinerator fly ash by incorporation of green materials. Journal of Cleaner Production, 2019. 222: p. 335-343.
24. Liu, Z., et al., Ash fusion characteristics of bamboo, wood and coal. Energy, 2018. 161: p. 517-522.
25. Tang, P., et al., Immobilization of hazardous municipal solid waste incineration fly ash by novel alternative binders derived from cementitious waste. Journal of hazardous materials, 2020. 393: p. 122386.
26. Cristelo, N., et al., Recycling municipal solid waste incineration slag and fly ash as precursors in low-range alkaline cements. Waste Management, 2020. 104: p. 60-73.
27. Su, X., et al., Evaluation of a flue gas cleaning system of a circulating fluidized bed incineration power plant by the analysis of pollutant emissions. Powder Technology, 2015. 286: p. 9-15.
28. Zhang, M., et al., Stabilization of heavy metals in MSWI fly ash with a novel dithiocarboxylate-functionalized polyaminoamide dendrimer. Waste Management, 2020. 105: p. 289-298.
29. Belevi, H. and H. Moench, Factors determining the element behavior in municipal solid waste incinerators. 1. Field studies. Environmental science & technology, 2000. 34(12): p. 2501-2506.
30. Morf, L.S., P.H. Brunner, and S. Spaun, Effect of operating conditions and input variations on the partitioning of metals in a municipal solid waste incinerator. Waste Management and Research, 2000. 18(1): p. 4-15.
31. Srum, L., F. Frandsen, and J. Hustad, On the fate of heavy metals in municipal solid waste combustion. Part I. devolatilisation of heavy metals on the grate [J]. Fuel, 2003. 82(18): p. 2273-2283.
32. Wu, L., et al., Emission and control characteristics for incineration of Sedum plumbizincicola biomass in a laboratory-scale entrained flow tube furnace. International journal of phytoremediation, 2013. 15(3): p. 219-231.
33. Zhang, Y., et al., Experimental and thermodynamic investigation on transfer of cadmium influenced by sulfur and chlorine during municipal solid waste (MSW) incineration. Journal of Hazardous Materials, 2008. 153(1-2): p. 309-319.
34. Sharifikolouei, E., et al., Vitrification of municipal solid waste incineration fly ash: An approach to find the successful batch compositions. Ceramics International, 2021. 47(6): p. 7738-7744.
35. Zhang, Z., et al., Stabilization/solidification of municipal solid waste incineration fly ash via co-sintering with waste-derived vitrified amorphous slag. Waste Management, 2016. 56: p. 238-245.
36. Quina, M.J., J.C. Bordado, and R.M. Quinta-Ferreira, Treatment and use of air pollution control residues from MSW incineration: An overview. Waste Management, 2008. 28(11): p. 2097-2121.
37. Chen, Z., et al., Fate of heavy metals during co-disposal of municipal solid waste incineration fly ash and sewage sludge by hydrothermal coupling pyrolysis process. Waste management, 2020. 109: p. 28-37.
38. 胡艳军, 方., 严密, 水热法稳定垃圾焚烧飞灰重金属研究. 浙江工业大学学报, 2018: p. 192-198.
39. Qiu, Q., et al., Adsorption of copper ions by fly ash modified through microwave-assisted hydrothermal process. Journal of Material Cycles and Waste Management, 2019. 21(3): p. 469-477.
40. Quina, M.J., J.C. Bordado, and R.M. Quinta-Ferreira, Chemical stabilization of air pollution control residues from municipal solid waste incineration. Journal of Hazardous Materials, 2010. 179(1-3): p. 382-392.
41. Mangialardi, T., et al., Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices. Journal of hazardous materials, 1999. 70(1-2): p. 53-70.
42. Chen, X., et al., Chlorides removal and control through water-washing process on MSWI fly ash. Procedia Environmental Sciences, 2016. 31: p. 560-566.
43. Chen, W.-S., et al., Removal of chloride from MSWI fly ash. Journal of hazardous materials, 2012. 237: p. 116-120.
44. Loginova, E., M. Proskurnin, and H.J.H. Brouwers, Municipal solid waste incineration (MSWI) fly ash composition analysis: A case study of combined chelatant-based washing treatment efficiency. Journal of Environmental Management, 2019. 235: p. 480-488.
45. Huang, K., et al., Leaching behavior of heavy metals with hydrochloric acid from fly ash generated in municipal waste incineration plants. Transactions of Nonferrous Metals Society of China, 2011. 21(6): p. 1422-1427.
46. Huang, K., et al., Leaching behavior of heavy metals with hydrochloric acid from fly ash generated in municipal waste incineration plants. Transactions of Nonferrous Metals Society of China, 2011. 21(6): p. 1422-1427.
47. Nagib, S. and K. Inoue, Recovery of lead and zinc from fly ash generated from municipal incineration plants by means of acid and/or alkaline leaching. Hydrometallurgy, 2000. 56(3): p. 269-292.
48. Tong, L., et al., Investigation of controlling factors on toxic metal leaching behavior in municipal solid wastes incineration fly ash. Environmental Science and Pollution Research, 2019. 26(28): p. 29316-29326.
49. Kang, D., et al., Heavy-metal reduction and solidification in municipal solid waste incineration (MSWI) fly ash using water, NaOH, KOH, and NH4OH in combination with CO2 uptake procedure. Chemical Engineering Journal, 2020. 380: p. 122534.
50. 社團法人台灣環境資訊協會. 2020.
51. Dou, X., et al., Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renewable and Sustainable Energy Reviews, 2017. 79: p. 24-38.
52. Ghosh, A., M. Mukiibi, and W. Ela, TCLP Underestimates Leaching of Arsenic from Solid Residuals under Landfill Conditions. Environmental Science & Technology, 2004. 38(17): p. 4677-4682.
53. Liu, Y., et al., Limitations of the TCLP fluid determination step for hazardous waste characterization of US municipal waste incineration ash. Waste Management, 2019. 87: p. 590-596.
54. 行政院環保署. 灰渣產量與流向. 2020.
55. Gilliam, T.M., L.R. Dole, and E.W. McDaniel, Waste immobilization in cement-based grouts, in Hazardous and Industrial Solid Waste Testing and Disposal. 1986, ASTM Philadelphia, PA. p. 295.
56. Côté, P. and D. Hamilton. Leachability comparison of four hazardous waste solidification processes. 1983.
57. Shieh, C.S. and F.J. Roethel, Physical and chemical behavior of stabilized sewage sludge blocks in seawater. Environmental science & technology, 1989. 23(1): p. 121-125.
58. Cheng, K., P. Bishop, and J. Isenburg, Cement Stabilization/Solidification Techniques: pH Profile Within Acid-Attacked Waste form, in Studies in Environmental Science. 1991, Elsevier. p. 371-372.
59. Poon, C.S., et al., Mechanisms of metal stabilization by cement based fixation processes. Science of the total environment, 1985. 41(1): p. 55-71.
60. Stumm, W., Aquatic chemistry. Introduction Emphasizing Chemical Equilibria in Natural Waters, 1981.
61. Adenot, F. and M. Buil, Modelling of the corrosion of the cement paste by deionized water. Cement and Concrete research, 1992. 22(2-3): p. 489-496.
62. Côté, P., Contaminant leaching from cement-based waste forms under acidic conditions. 1986.
63. Weinheimer, R.M., D.F. Evans, and E. Cussler, Diffusion in surfactant solutions. Journal of Colloid and Interface Science, 1981. 80(2): p. 357-368.
64. Bishop, P.L., R. Gong, and T.C. Keener, Effects of leaching on pore size distribution of solidified/stabilized wastes. Journal of hazardous materials, 1992. 31(1): p. 59-74.
65. Arniella, E.F. and L.J. Blythe, Solid solution for hazardous wastes. Chemical Engineering(NY), 1990. 97(2): p. 92-102.
66. Stumm, W. and J.J. Morgan, Aquatic chemistry: chemical equilibria and rates in natural waters. 2012: John Wiley & Sons.
67. Cheng, K.Y., P. Bishop, and J. Isenburg, Leaching boundary in cement-based waste forms. Journal of Hazardous Materials, 1992. 30(3): p. 285-295.
68. Bishop, P., Prediction of heavy metal leaching rates from stabilized/solidified hazardous wastes. 1986.
69. He, H., et al., Emission characteristics of dioxins during iron ore Co-sintering with municipal solid waste incinerator fly ash in a sintering pot. Chemosphere, 2022. 287: p. 131884.
70. Liu, G., et al., Field pilot study on emissions, formations and distributions of PCDD/Fs from cement kiln co-processing fly ash from municipal solid waste incinerations. Journal of Hazardous Materials, 2015. 299: p. 471-478.
71. Song, B., et al., Compressive strength, water and chloride transport properties of early CO2-cured Portland cement-fly ash-slag ternary mortars. Cement and Concrete Composites, 2022. 134: p. 104786.
72. Zhao, W. and Q. Yang, Performance characterization and life cycle assessment of semi-flexible pavement after composite modification of cement-based grouting materials by desulfurization ash, fly ash, and rubber powder. Construction and Building Materials, 2022. 359: p. 129549.
73. Zhang, J., et al., Effects of fly ash on MgO-based shrinkage-compensating cement: Microstructure and properties. Construction and Building Materials, 2022. 339: p. 127648.
74. Wang, T., et al., Reduction of SO42− and Cl− migration rates and degradation of silica nanoparticles incorporated cement pastes exposed to co-existence of sulfate, chloride and electric fields. Construction and Building Materials, 2022. 344: p. 128234.
75. Chu, H., et al., Effect of stray current on stability of bound chlorides in chloride and sulfate coexistence environment. Construction and Building Materials, 2019. 194: p. 247-256.
76. Joseph, A.M., et al., The use of municipal solid waste incineration ash in various building materials: a Belgian point of view. Materials, 2018. 11(1): p. 141.
77. 陳偉聖, 電爐集塵灰與焚化飛灰除氯技術之研究. 2011.
78. Saikia, N., et al., Pre-treatment of municipal solid waste incineration (MSWI) bottom ash for utilisation in cement mortar. Construction and Building Materials, 2015. 96: p. 76-85.
79. Ping, X. and J.J. Beaudoin, Mechanism of sulphate expansion I. Thermodynamic principle of crystallization pressure. Cement and concrete research, 1992. 22(4): p. 631-640.
80. García-Maté, M., et al., Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement. Cement and Concrete Composites, 2015. 55: p. 53-61.
81. Haiying, Z., Z. Youcai, and Q. Jingyu, Characterization of heavy metals in fly ash from municipal solid waste incinerators in Shanghai. Process Safety and Environmental Protection, 2010. 88(2): p. 114-124.
82. Shi, H.-S. and L.-L. Kan, Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete. Journal of hazardous materials, 2009. 164(2-3): p. 750-754.
83. Qian, G., et al., Utilization of MSWI fly ash for stabilization/solidification of industrial waste sludge. Journal of hazardous materials, 2006. 129(1-3): p. 274-281.
84. Pan, Y., et al., Chemical characteristics and risk assessment of typical municipal solid waste incineration (MSWI) fly ash in China. Journal of Hazardous Materials, 2013. 261: p. 269-276.
85. German, R.M., History of sintering: empirical phase. Powder Metallurgy, 2013. 56(2): p. 117-123.
86. Duran, C., et al., Eco-friendly processing and methods for ceramic materials-A review. Journal of the Ceramic Society of Japan, 2008. 116(1359): p. 1175-1181.
87. Ibn-Mohammed, T., et al., Decarbonising ceramic manufacturing: A techno-economic analysis of energy efficient sintering technologies in the functional materials sector. Journal of the European Ceramic Society, 2019. 39(16): p. 5213-5235.
88. German, R.M., Sintering theory and practice. 1996.
89. Ashby, M. and K. Johnson, Chapter 4 - Materials: The Stuff That Surrounds Us, in Materials and Design (Third Edition), M. Ashby and K. Johnson, Editors. 2014, Butterworth-Heinemann. p. 62-98.
90. Zhang, W. and I. Gladwell, Performance of MOL for surface motion driven by a Laplacian of curvature, in Numerical Treatment of Multiphase Flows in Porous Media. 2000, Springer. p. 419-429.
91. Sutton, W.H., Microwave processing of ceramic materials. American Ceramic Society Bulletin, 1989. 68(2): p. 376-386.
92. Guillon, O., et al., Field‐assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Advanced Engineering Materials, 2014. 16(7): p. 830-849.
93. Kingery, W.D., H.K. Bowen, and D.R. Uhlmann, Introduction to ceramics. Vol. 17. 1976: John wiley & sons.
94. Galotta, A. and V.M. Sglavo, The cold sintering process: A review on processing features, densification mechanisms and perspectives. Journal of the European Ceramic Society, 2021. 41(16): p. 1-17.
95. Vakifahmetoglu, C. and L. Karacasulu, Cold sintering of ceramics and glasses: A review. Current Opinion in Solid State and Materials Science, 2020. 24(1): p. 100807.
96. Guo, J., et al., Cold sintering process: a new era for ceramic packaging and microwave device development. Journal of the American Ceramic Society, 2017. 100(2): p. 669-677.
97. Randall, C.A., et al., Cold sintering ceramics and composites. 2017, Google Patents.
98. Rojek, J., et al., Discrete element simulation of powder sintering. 2022.
99. German, R.M., P. Suri, and S.J. Park, Liquid phase sintering. Journal of materials science, 2009. 44(1): p. 1-39.
100. Grasso, S., et al., A review of cold sintering processes. Advances in Applied Ceramics, 2020. 119(3): p. 115-143.
101. Hirano, S.-i., HYDROTHERMAL REACTION SINTERING OF PURE CR2O3. 1976.
102. Toraya, H., M. Yoshimura, and S. Somiya, Hydrothermal Reaction‐Sintering of Monoclinic HfO2. Journal of the American Ceramic Society, 1982. 65(9): p. c159-c160.
103. Sōmiya, S., et al., Hydrothermal reaction sintering of Cr 2 O 3 and iron oxides, in Hydrothermal Reactions for Materials Science and Engineering. 1989, Springer. p. 4-14.
104. Somiya, S., Hydrothermal reactions for materials science and engineering: an overview of research in Japan. 2012.
105. Gutmanas, E., A. Rabinkin, and M. Roitberg, Cold sintering under high pressure. Scripta Metallurgica, 1979. 13(1): p. 11-15.
106. Gutmanas, E., et al., Cold Sintered Stainless Steel--Chromium Oxide Composites. Progress in Powder Metallurgy 1985., 1985. 41: p. 631-640.
107. Gutmanas, E., et al., Cold Sintered 4640 Steel--Vanadium Carbide Composites. Horizons of Powder Metallurgy. Part II, 1986: p. 1083-1086.
108. Gutmanas, E. and D. Zak, Mechanical Behaviour of Cold Sintered High Speed Steel--Carbides Composites. Modern Developments in Powder Metallurgy., 1988. 20: p. 421-429.
109. Costa, T.M., et al., Study of nanocrystalline γ-Al2O3 produced by high-pressure compaction. The Journal of Physical Chemistry B, 1999. 103(21): p. 4278-4284.
110. Goldman, D., E. Gutmanas, and D. Zak, Reduction of oxides and cold sintering of water-atomized powders of Ni, Ni-20Cr and Nimonic 80A. Journal of materials science letters, 1985. 4(10): p. 1208-1212.
111. Dariel, M., M. Ratzker, and F. Eichmiller, Acid-assisted consolidation of powder compacts: cold-welding or cold sintering. Journal of materials science, 1999. 34(11): p. 2601-2607.
112. Yamasaki, N., et al., A hydrothermal hot-pressing method: apparatus and application, in Hydrothermal Reactions for Materials Science and Engineering. 1989, Springer. p. 423-424.
113. Yanagisawa, K., Q. Feng, and N. Yamasaki, Preparation of ceramics by hydrothermal hot-pressing. International Journal of High Pressure Research, 2001. 20(1-6): p. 343-349.
114. Nishioka, M., K. Yanagisawa, and N. Yamasaki, Solidification of sludge ash by hydrothermal hot-pressing. Research journal of the water pollution control federation, 1990: p. 926-932.
115. Veloza, Z.M., K. Yanagizawa, and N. Yamasaki, Recycling waste glasses by means of the hydrothermal hot pressing method. Journal of materials science letters, 1999. 18(22): p. 1811-1813.
116. Yanagisawa, K., et al., Novel route for recycling of steelmaking slag by means of the hydrothermal hot-pressing method. Journal of materials science letters, 2002. 21(9): p. 693-695.
117. Hirai, N., et al., Fabrication of porous solidified materials from blast furnace slag using hydrothermal hot-pressing method and measurement of thermal conductivity of solidified materials. TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 2009. 95(1): p. 1A-6A.
118. Yoshikawa, T., M. Hosokawa, and T. Tanaka, MgO effect on hydrothermal solidification of blast furnace slag. ISIJ international, 2008. 48(5): p. 557-562.
119. Tae, S.-J., T. Tanaka, and K. Morita, Effect of microwave irradiation on hydrothermal treatment of blast furnace slag. ISIJ international, 2009. 49(8): p. 1259-1264.
120. Sun, P. and H.-C. Wu, Splitting tensile strength of fly ash activated by hydrothermal hot-pressing process. Journal of materials in civil engineering, 2009. 21(8): p. 356-361.
121. Song, H., et al., Heavy metal fixing and heat resistance abilities of coal fly ash-waste glass based geopolymers by hydrothermal hot pressing. Advanced Powder Technology, 2018. 29(6): p. 1487-1492.
122. Vakifahmetoglu, C., et al., Reactive Hydrothermal Liquid-Phase Densification (rHLPD) of Ceramics – A Study of the BaTiO3[TiO2] Composite System. Journal of the American Ceramic Society, 2016. 99(12): p. 3893-3901.
123. Gupta, C. and H. Singh, Uranium resource processing: secondary resources. 2003: Springer Science & Business Media.
124. Medri, V., et al., Nano-to-macroporous TiO2 (anatase) by cold sintering process. Journal of the European Ceramic Society, 2019. 39(7): p. 2453-2462.
125. Ndayishimiye, A., et al., Roadmap for densification in cold sintering: Chemical pathways. Open Ceramics, 2020. 2: p. 100019.
126. Guo, H., et al., Cold sintering process: a novel technique for low‐temperature ceramic processing of ferroelectrics. Journal of the American Ceramic Society, 2016. 99(11): p. 3489-3507.
127. Li, L., et al., Effects of water content during cold sintering process of NaCl ceramics. Journal of Alloys and Compounds, 2019. 787: p. 352-357.
128. Biesuz, M., et al., A theoretical analysis of cold sintering. Advances in Applied Ceramics, 2020. 119(2): p. 75-89.
129. Rahaman, M.N., Ceramic processing and sintering. 2017: CRC press.
130. Guo, H., et al., Protocol for ultralow-temperature ceramic sintering: an integration of nanotechnology and the cold sintering process. ACS nano, 2016. 10(11): p. 10606-10614.
131. Seo, J.-H., et al., Cold sintering of a Li-ion cathode: LiFePO4-composite with high volumetric capacity. Ceramics International, 2017. 43(17): p. 15370-15374.
132. Seo, J.-H., et al., Broad temperature dependence, high conductivity, and structure-property relations of cold sintering of LLZO-based composite electrolytes. Journal of the European Ceramic Society, 2020. 40(15): p. 6241-6248.
133. Berbano, S.S., et al., Cold sintering process of Li1. 5Al0. 5Ge1. 5 (PO4) 3 solid electrolyte. Journal of the American Ceramic Society, 2017. 100(5): p. 2123-2135.
134. Nayir, S., et al., Cold sintering of a covalently bonded MoS2/graphite composite as a high capacity Li–ion electrode. ChemNanoMat, 2018. 4(10): p. 1088-1094.
135. de Beauvoir, T.H., et al., Cold sintering of ZnO-PTFE: Utilizing polymer phase to promote ceramic anisotropic grain growth. Acta Materialia, 2020. 186: p. 511-516.
136. Liu, J.-A., et al., Preparation of high-density InGaZnO4 target by the assistance of cold sintering. Materials Science in Semiconductor Processing, 2018. 84: p. 17-23.
137. Funahashi, S., et al., Demonstration of the cold sintering process study for the densification and grain growth of ZnO ceramics. Journal of the American Ceramic Society, 2017. 100(2): p. 546-553.
138. Reed, J.S., Principles of ceramics processing. 1995.
139. Qiu, Q., et al., Degradation of PCDD/Fs in MSWI fly ash using a microwave-assisted hydrothermal process. Chinese Journal of Chemical Engineering, 2019. 27(7): p. 1708-1715.
140. Xie, J., et al., Hydrothermal treatment of MSWI fly ash for simultaneous dioxins decomposition and heavy metal stabilization. Frontiers of Environmental Science & Engineering in China, 2010. 4(1): p. 108-115.
141. 李輝煌, 田口方法-品質設計的原理與實務. 2004: 高立圖書有限公司.
142. 梁红霞, “田口方法” 的集大成者——田口玄一. 中国质量, 2003(10): p. 40-40.
143. Karna, S.K. and R. Sahai, An overview on Taguchi method. International journal of engineering and mathematical sciences, 2012. 1(1): p. 1-7.
144. Barker, T.B., Engineering quality by design: interpreting the Taguchi approach. Vol. 113. 1990: CRC Press.
145. Taguchi, G., Introduction to quality engineering: designing quality into products and processes. 1986.
146. Haiying, Z., Z. Youcai, and Q. Jingyu, Thermal characterization of fly ash from one municipal solid waste incinerator (MSWI) in Shanghai. Process Safety and Environmental Protection, 2010. 88(4): p. 269-275.
147. Du, B., et al., Characterization of naturally aged cement-solidified MSWI fly ash. Waste Management, 2018. 80: p. 101-111.
148. Galan, I., F.P. Glasser, and C. Andrade, Calcium carbonate decomposition. Journal of Thermal Analysis and Calorimetry, 2013. 111(2): p. 1197-1202.
149. Wieczorek-Ciurowa, K., J. Paulik, and F. Paulik, Influence of foreign materials upon the thermal decomposition of dolomite, calcite and magnesite part I. Influence of sodium chloride. Thermochimica Acta, 1980. 38(2): p. 157-164.
150. Guo, R.Q., P.K. Rohatgi, and D. Nath, Preparation of aluminium-fly ash particulate composite by powder metallurgy technique. Journal of Materials Science, 1997. 32(15): p. 3971-3974.
151. Wang, X., et al., Efficiently sintering of MSWI fly ash at a low temperature enhanced by in-situ pressure assistant: Process performance and product characterization. Waste Management, 2021. 134: p. 21-31.
152. Cao, J., et al., Sinterability, microstructure and compressive strength of porous glass-ceramics from metallurgical silicon slag and waste glass. Ceramics International, 2016. 42(8): p. 10079-10084.