| 研究生: |
林展丞 Lin, Jam-Cheng |
|---|---|
| 論文名稱: |
探討ARNT調控EGF誘導PTX3基因表現之機制 Characterization of ARNT in the regulation of EGF-induced PTX3 gene expression |
| 指導教授: |
陳炳焜
Chen, Ben-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物資訊研究所 Institute of Bioinformatics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 發炎 、基因調控 、啟動子 |
| 外文關鍵詞: | PTX3, ARNT, EGF, c-Jun, Sp1 |
| 相關次數: | 點閱:101 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
芳香烴核轉位蛋白ARNT,必須先與另一個具有bHLH/PAS domain的蛋白作用後,才能成為具完整活性的複合體,像是HIF-1α。另外,ARNT曾被報導參與在許多細胞生理功能的角色,像是胚胎發育,胰島β細胞分泌 而與第二類糖尿病代謝的調控,以及細胞增生等。然而,ARNT參與在發炎刺激下的生理功能,對於調控一些基因轉錄的活性和細胞激素刺激下的基因表達,仍是不清楚的。PTX3是一類受前發炎因子刺激,而表現的急性發炎蛋白,在生理上被認為具有古老抗體的功能,包括辨認外來物,活化補體系統,和促進巨噬細胞對免疫原的辨認。另外,PTX3在女性生殖上,參與在卵丘細胞外基質的擴建和促進卵母細胞的成熟及分化,也扮演重要角色。而目前所知,在卵母細胞成熟擴張過程中,EGF調控PTX3的表現,是透過SMAD2/3訊息傳遞路徑;然而對於EGF如何調控PTX3基因轉錄上的表達仍是未知的。所以,我們便利用子宮頸上皮癌HeLa細胞株,觀察EGF刺激PTX3基因表現的調控情形。接著,使用ARNT siRNA干擾技術,發現EGF所誘導PTX3啟動區的活性及mRNA表現,都有抑制的現象。更進一步地,發現不管是在時間或劑量上,大量表現ARNT蛋白都會活化該啟動區的表現,證實了ARNT可以透過轉錄層次來調控該基因的表達。而為了確認ARNT所調控的PTX3基因表達,是透過PTX3啟動子上哪個結合位。首先,我們將PTX3啟動區段切,來分析啟動區上具有ARNT反應的區段。所以,在利用AP-1位置點突變試驗方式後,發現AP-1位置有部份負責ARNT參與在PTX3基因調控表達。另外,我們也發現AP-1和Sp1位置,對於EGF誘導PTX3啟動子活化皆有貢獻。因此,ARNT很有可能透過與c-Jun、Sp1 的交互作用而參與在EGF所誘導的PTX3基因調控。此研究說明,除了發炎因子會刺激PTX3基因表現外,生長因子EGF的刺激,也能夠調控其表達。對於EGF為何能調控發炎反應PTX3基因的表達,ARNT在其中的角色,提供一個新的解釋機制。
The aryl hydrocarbon receptor nuclear translocator (ARNT) serves as the potential hetero-dimeric partner for bHLH-PAS proteins such as hypoxia-inducible factor-1α (HIF-1α). In addition, ARNT has been reported to involve widely in many cellular events, such as embryonic development, pancreatic β-cell function in the regulation of type Ⅱ diabetes and cell proliferation. However, the role of ARNT in the regulation of transcriptional activity and gene expression of cytokines, which cellular biological function involved in the inflammation, is not clear. Pentraxin 3 (PTX3) is an acute phase pro-inflammatory protein, which acts as a functional ancestor of antibodies, recognizing microbes, activating complement system, and facilitating pathogen recognition by phagocytes. Also, PTX3 is essential in female fertility because it participates in cumulus matrix expansion and facilitates the oocyte maturation and development. We know so far that EGF regulates PTX3 gene expression is through the SMAD2/3 signaling pathway. However, the signaling molecules involved in EGF-responsive PTX3 gene expression are not fully clarified. Here, we find EGF-stimulated PTX3 gene expression in the cervical cancer cell line. Also, ARNT small interfering RNA (siRNA) inhibits the promoter activity and the mRNA level of PTX3 in EGF-treated HeLa cells. Furthermore, over-expression of ARNT induces the PTX3 promoter activity in a time- and dose-dependent manner. To characterize the binding sites located in PTX3 promoter which are essential for ARNT-regulated gene expression, we use truncated promoter fragments of PTX3 to analyze the ARNT-responsive regions. In addition, to further confirm AP-1 site involved in the ARNT-activated hPTX3 promoter activity, DNA construct with mutation of AP1-binding site was used. Also, we find that AP-1 and Sp1 sties play a major role for the EGF inducibility of the gene. Thus, we raise the hypothesis that ARNT may co-operate with c-Jun or Sp1 in the EGF induction of PTX3 gene transcription. Taken together, our study will clarify the potential role of ARNT in the regulation of PTX3 gene expression under normoxic condition and provide an additional mechanism in considering the EGF factor as a regulator to control the PTX3 expression, but not only the pro-inflammatory mediators in physiological condition.
1.Gewurz, H., X.H. Zhang, and T.F. Lint, Structure and function of the pentraxins. Curr Opin Immunol, 1995. 7(1): p.54-64.
2.Goodman, A.R.,et al., Differential regulation of TSG-14 expression in murine fibroblasts and peritoneal macrophages. J Leukoc Biol, 2000. 67(3): p.387-95.
3.Inforzato, A., et al., Structure and function of the long pentraxin PTX3 glycosidic moiety: fine-tuning of the interaction with C1q and complement activation. Biochemistry, 2006. 45(38):p. 11540-51.
4.Luchetti, M.M., et al., Expression and production of the long pentraxin PTX3 in rheumatoid arthritis (RA). Clin Exp Immunol, 2000. 119(1): p.196-202.
5.Bussolati, B., et al., The long pentraxin PTX3 is synthesized in IgA glomerulonephritis and activates mesangial cells. J Immunol, 2003. 170(3): p.1466-72.
6.Salio, M., et al., Cardioprotective function of the long pentraxin PTX3 in acute myocardial infarction. Circulation, 2008. 117(8): p. 1055-64.
7.Norata, G.D., et al., Deficiency of the long pentraxin PTX3 promotes vascular inflammation and atherosclerosis. Circulation, 2009. 120(8): p.699-708.
8.Mantovani, A., et al., The long pentraxin PTX3 in vascular pathology. Vascul Pharmacol, 2006. 45(5): p.326-30.
9.Bottazzi, B., et al., The long pentraxin PTX3 as a prototypic humoral pattern recognition receptor: interplay with cellular innate immunity. Immunol Rev, 2009. 227(1): p.9-18.
10.Basiglio, C.L., et al., Complement activation and disease: protective effects of hyperbilirubinaemia. Clin Sci (Lond), 2010. 118(2): p.99-113.
11.Baruah, P., et al., The tissue pentraxin PTX3 limits C1q-mediated complement activation and phagocytosis of apoptotic cells by dendritic cells. J Leukoc Biol, 2006. 80(1): p.87-95.
12.Baruah, P., et al., The pattern recognition receptor PTX3 is recruited at the synapse between dying and dendritic cells, and edits the cross-presentation of self, viral, and tumor antigens. Blood, 2006. 107(1): p.151-8.
13.Garlanda, C., et al., The soluble pattern recognition receptor pentraxin-3 in innate immunity, inflammation and fertility. J Reprod Immunol, 2009. 83(1-2): p.128-33.
14.Cotena, A., et al., Complement dependent amplification of the innate response to a cognate microbial ligand by the long pentraxin PTX3. J Immunol, 2007. 179(9): p.6311-7.
15.Chen, L., P.T. Russell, and W.J. Larsen, Functional significance of cumulus expansion in the mouse: roles for the preovulatory synthesis of hyaluronic acid within the cumulus mass. Mol Reprod Dev, 1993. 34(1): p.87-93.
16.Kanayama, I., et al., Morphological differentiation of cumulus-oocyte complexes induced by the administration of gonadotropins in mice. Nippon Juigaku Zasshi, 1990. 52(2): p. 199-205.
17.Diaz, F.J., K. Wigglesworth, and J.J. Eppig, Oocytes determine cumulus cell lineage in mouse ovarian follicles. J Cell Sci, 2007. 120(Pt 8): p.1330-40.
18.Inforzato, A., et al., Structural characterization of PTX3 disulfide bond network and its multimeric status in cumulus matrix organization. J Biol Chem, 2008. 283(15): p.10147-61.
19.Varani, S., et al., Knockout of pentraxin 3, a downstream target of growth differentiation factor-9, causes female subfertility. Mol Endocrinol, 2002. 16(6): p.1154-67.
20.Scarchilli, L., et al., PTX3 interacts with inter-alpha-trypsin inhibitor: implications for hyaluronan organization and cumulus oophorus expansion. J Biol Chem, 2007. 282(41): p.30161-70.
21.Diaz, F.J., et al., The preantral granulosa cell to cumulus cell transition in the mouse ovary: development of competence to undergo expansion. Dev Biol, 2006. 299(1): p.91-104.
22.Diaz, F.J., K. Wigglesworth, and J.J. Eppig, Oocytes are required for the preantral granulosa cell to cumulus cell transition in mice. Dev Biol, 2007. 305(1): p.300-11.
23.Garlanda, C., et al., Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature, 2002. 420(6912): p. 182-6.
24.Presta, M., et al., Role of the soluble pattern recognition receptor PTX3 in vascular biology. J Cell Mol Med, 2007. 11(4): p.723-38.
25.Garlanda, C., et al., Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annual Review of Immunology, 2005. 23: p.337-366.
26.Gui, L.M. and I.M. Joyce, RNA interference evidence that growth differentiation factor-9 mediates oocyte regulation of cumulus expansion in mice. Biol Reprod, 2005. 72(1): p.195-9.
27.Su, Y.Q., et al., Mitogen-activated protein kinase activity in cumulus cells is essential for gonadotropin-induced oocyte meiotic resumption and cumulus expansion in the mouse. Endocrinology, 2002. 143(6): p.2221-32.
28.Sela-Abramovich, S., et al., Mitogen-activated protein kinase mediates luteinizing hormone-induced breakdown of communication and oocyte maturation in rat ovarian follicles. Endocrinology, 2005. 146(3): p.1236-44.
29.Doni,A., et al., Cell-specific regulation of PTX3 by glucocorticoid hormones in hematopoietic and nonhematopoietic cells. J Biol Chem, 2008. 283(44): p.29983-92.
30.Doni, A., et al., Regulation of PTX3, a key component of humoral innate immunity in human dendritic cells: stimulation by IL-10 and inhibition by IFN-gamma. J Leukoc Biol, 2006. 79(4): p. 797-802.
31.Beales, I.L., Gastrin and interleukin-1beta stimulate growth factor secretion from cultured rabbit gastric parietal cells. Life Sci, 2004. 75(25): p.2983-95.
32.Ravenna,L.,et al., Up-regulation of the inflammatory-reparative phenotype in human prostate carcinoma. Prostate, 2009. 69(11): p. 1245-55.
33.Noordhuis, M.G., et al., Expression of epidermal growth factor receptor (EGFR) and activated EGFR predict poor response to (chemo)radiation and survival in cervical cancer. Clin Cancer Res, 2009. 15(23): p.7389-97.
34.Cristofanilli, M., Novel targeted therapies in inflammatory breast cancer. Cancer, 2010. 116(11 Suppl): p.2837-9.
35.Philip, M., D.A. Rowley, and H. Schreiber, Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol, 2004. 14(6): p. 433-9.
36.Alberti, L., et al., Expression of long pentraxin PTX3 in human adipose tissue and its relation with cardiovascular risk factors. Atherosclerosis, 2009. 202(2): p.455-60.
37.Latini, R., et al., Prognostic significance of the long pentraxin PTX3 in acute myocardial infarction. Circulation, 2004. 110(16): p. 2349-54.
38.Littlewood, T.D. and G.I. Evan, Transcription factors 2: helix-loop-helix. Protein Profile, 1994. 1(6): p.635-709.
39.Antonsson, C., et al., Constitutive function of the basic helix-loop-helix/PAS factor Arnt. Regulation of target promoters via the E box motif. J Biol Chem, 1995. 270(23): p.13968-72.
40.Moglich, A., R.A. Ayers, and K. Moffat, Structure and signaling mechanism of Per-ARNT-Sim domains. Structure, 2009. 17(10): p. 1282-94.
41.Partch, C.L., et al., Molecular basis of coiled coil coactivator recruitment by the aryl hydrocarbon receptor nuclear translocator (ARNT). J Biol Chem, 2009. 284(22): p.15184-92.
42.Adelman, D.M., E. Maltepe, and M.C. Simon, Multilineage embryonic hematopoiesis requires hypoxic ARNT activity. Genes Dev, 1999. 13(19): p.2478-83.
43.Rusnati, M., et al., Selective recognition of fibroblast growth factor-2 by the long pentraxin PTX3 inhibits angiogenesis. Blood, 2004. 104(1): p.92-9.
44.Chang, K.Y., et al., Epidermal growth factor-activated aryl hydrocarbon receptor nuclear translocator/HIF-1{beta} signal pathway up-regulates cyclooxygenase-2 gene expression associated with squamous cell carcinoma. J Biol Chem, 2009. 284(15): p.9908-16.
45.Chang, W.C., Cell signaling and gene regulation of human 12(S)-lipoxygenase expression. Prostaglandins Other Lipid Mediat, 2003. 71(3-4): p.277-85.
46.Huang, W.C., et al., Involvement of aryl hydrocarbon receptor nuclear translocator in EGF-induced c-Jun/Sp1-mediated gene expression. Cell Mol Life Sci, 2010.
47.Wright, C.W. and C.S. Duckett, The aryl hydrocarbon nuclear translocator alters CD30-mediated NF-κappaB-dependent transcription. Science, 2009. 323(5911): p. 251-5.
48.Basile, A., et al., Characterization of the promoter for the human long pentraxin PTX3. Role of NF-κappaB in tumor necrosis factor-alpha and interleukin-1beta regulation. J Biol Chem, 1997. 272(13): p.8172-8.
49.Cowden Dahl, K.D., R. Zeineldin, and L.G. Hudson, PEA3 is necessary for optimal epidermal growth factor receptor-stimulated matrix metalloproteinase expression and invasion of ovarian tumor cells. Mol Cancer Res, 2007.5(5): p. 413-21.
50.Souza, D.G., et al., The long pentraxin PTX3 is crucial for tissue inflammation after intestinal ischemia and reperfusion in mice. Am J Pathol, 2009. 174(4): p.1309-18.
51.Ibrahim, R., et al., Expression of FasL in squamous cell carcinomas of the cervix and cervical intraepithelial neoplasia and its role in tumor escape mechanism. Cancer, 2006.106(5): p.1065-77.
校內:2012-08-06公開