簡易檢索 / 詳目顯示

研究生: 陳力通
Chen, Li-Tung
論文名稱: 3D列印及紫外線固化加工成型法應用於EVA複合材料超臨界物理發泡之研究
Research on the application of 3D printing and ultraviolet curing processing method to the supercritical physical foaming of EVA composite materials
指導教授: 陳志勇
Chen, Chuh-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 92
中文關鍵詞: 3D列印超臨界N2發泡紫外光固化
外文關鍵詞: 3D printing, Supercritical N2 foaming, UV curing
相關次數: 點閱:147下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I ABSTRACT II 致謝 XX 總目錄 XXI 圖目錄 XXIV 表目錄 XXVIII 第一章 緒論 1 第二章 文獻回顧 4 2-1 3D列印- FDA熔融沉積成型機 4 2-1-1乙烯/醋酸乙烯酯共聚合物(EVA)的3D列印成型 5 2-2高分子發泡材 7 2-2-1高分子發泡的類別以及應用 7 2-2-2塑料發泡劑 7 2-2-3物理發泡機制 8 2-3超臨界物理發泡控制參數之影響 9 2-3-1超臨界流體的種類 9 2-3-2含浸溫度 10 2-3-3含浸壓力 11 2-3-4 EVA複材交聯程度 16 2-4交聯發法提升EVA融體強度 18 2-4-1利用高能電子束或γ射線進行物理交聯 19 2-4-2過氧化物進行化學交聯 20 2-4-3 Silane交聯EVA 20 2-5 紫外光(UV)光固化法 21 2-5-1紫外固化反應機制 21 2-5-2各紫外光固化參數對交聯程度的影響 23 2-6 EVA複合材料發泡物性的補強 28 2-7研究目的與方法 30 第三章 研究與分析方法 31 3-1實驗設備 31 3-2實驗材料 32 3-3實驗步驟 33 3-3-1實驗流程圖 33 3-3-2 列印材料的製備 34 3-3-3 EVA光敏複材3D列印成型 34 3-3-4 3D列印成型製程 34 3-3-5 紫外光固化3D列印物件 35 3-4分析方法 36 3-4-1光固化程度黏度分析 36 3-4-2 3D列印物件機械強度測試 37 3-4-3 發泡物性分析 37 3-4-4 泡孔結構分析 39 第四章 結果與討論 40 4-1 3D列印EVA複材及紫外光固化方法 40 4-1-1 材料列印可行性分析 40 4-1-2不同劑量的I2959固化程度分析 42 4-2 CD101對EVA於3D列印及紫外光固化的影響 45 4-2-1 CD101添加量對3D列印EVA物件機械強度的影響 45 4-2-2加入CD101對紫外光固化EVA之影響 45 4-3樣品光固化均勻度分析 49 4-3-1第一階段UV光固化程度分析 49 4-3-2第二階段UV固化程度分析 50 4-4 預固化UV光強度對發泡性質之影響 53 4-4-1 UV光強度對預固化程度之影響 53 4-4-2 不同1st光源強度對發泡物性的影響 55 4-4-3 UV光固化深度分析 60 4-5發泡性質分析 63 4-5-1溫度參數對發泡性質的影響 63 4-5-2 壓力參數對發泡性質的影響 68 4-6不同光起啟劑用量對發泡材的影響 70 4-7 CD101添加量對EVA發泡材的影響 77 4-7-1 CD101添加量對發泡物性的影響 77 4-8不同層高3D列印成型 84 4-8-1不同層高下列印效果及機械強度 84 4-8-2不同層高3D列印物件之發泡體物性 85 第五章 結論 87 第六章 參考文獻 88

    [1] 宋宜駿, "3D列印市場概觀及桌上型3D列印機發展趨勢," in 科學月刊, ed, 2017.
    [2] "從技術發展到技術應用,3D列印將成為製造業的下個起飛關鍵," in INSIDE, ed: 經濟部工業局, 2019.
    [3] (2017, 07/17). 3D列印量產10萬雙鞋!愛迪達與矽谷新創如何做到? [Online]. Available: https://www.cw.com.tw/article/5087005?template=transformers.
    [4] 陳哲楷, "3D列印相關參數之分析與建立 -以FDM為例," 碩士, 機械工程系, 國立勤益科技大學, 台中市, 2016.
    [5] P. I. Anakhu, C. Bolu, A. A. Abioye, and J. Azeta, "Fused deposition modeling printed patterns for sand casting in a nigerian foundry: A Review," International Journal of Applied Engineering Research, vol. 13, no. 7, pp. 5113-5119, 2018.
    [6] S. Masood and W. Song, "Development of new metal/polymer materials for rapid tooling using fused deposition modelling," Materials & design, vol. 25, no. 7, pp. 587-594, 2004.
    [7] M. Nikzad, S. Masood, and I. Sbarski, "Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling," Materials & Design, vol. 32, no. 6, pp. 3448-3456, 2011.
    [8] O. S. Carneiro, A. Silva, and R. Gomes, "Fused deposition modeling with polypropylene," Materials & Design, vol. 83, pp. 768-776, 2015.
    [9] K. S. Boparai, R. Singh, and H. Singh, "Experimental investigations for development of Nylon6-Al-Al2O3 alternative FDM filament," Rapid Prototyping Journal, 2016.
    [10] M. Shofner, K. Lozano, F. Rodríguez‐Macías, and E. Barrera, "Nanofiber‐reinforced polymers prepared by fused deposition modeling," Journal of applied polymer science, vol. 89, no. 11, pp. 3081-3090, 2003.
    [11] V. Francis and P. K. Jain, "Investigation on the effect of surface modification of 3D printed parts by nanoclay and dimethyl ketone," Materials and Manufacturing Processes, vol. 33, no. 10, pp. 1080-1092, 2018.
    [12] N. Venkataraman et al., "Feedstock material property–process relationships in fused deposition of ceramics (FDC)," Rapid Prototyping Journal, 2000.
    [13] M. Taufik and P. K. Jain, "A study of build edge profile for prediction of surface roughness in fused deposition modeling," Journal of Manufacturing Science and Engineering, vol. 138, no. 6, 2016.
    [14] N. Kumar, P. K. Jain, P. Tandon, and P. M. Pandey, "3d Printing of Flexible Parts Using Eva Material," (in English), Materials Physics and Mechanics, vol. 37, no. 2, pp. 124-132, 2018.
    [15] S.-T. Lee, Introduction: polymeric foams, mechanisms, and materials. CRC press, 2004.
    [16] S. K. Goel and E. J. Beckman, "Generation of microcellular polymeric foams using supercritical carbon dioxide. I: Effect of pressure and temperature on nucleation," Polymer Engineering & Science, vol. 34, no. 14, pp. 1137-1147, 1994.
    [17] S.-T. Lee, C. B. Park, and N. S. Ramesh, Polymeric foams: science and technology. CRC press, 2006.
    [18] S.-T. Lee and C. B. Park, Foam extrusion: principles and practice. CRC press, 2014.
    [19] G. Akovalı, Polymers in construction. iSmithers Rapra Publishing, 2005.
    [20] R. B. Thompson, C. B. Park, and P. Chen, "Reduction of polymer surface tension by crystallized polymer nanoparticles," The Journal of chemical physics, vol. 133, no. 14, p. 144913, 2010.
    [21] N. Pallas and Y. Harrison, "An automated drop shape apparatus and the surface tension of pure water," Colloids and Surfaces, vol. 43, no. 2, pp. 169-194, 1990.
    [22] H. Park, C. Park, C. Tzoganakis, K.-H. Tan, and P. Chen, "Simultaneous determination of the surface tension and density of polystyrene in supercritical nitrogen," Industrial & engineering chemistry research, vol. 47, no. 13, pp. 4369-4373, 2008.
    [23] A. F. Stalder, T. Melchior, M. Müller, D. Sage, T. Blu, and M. Unser, "Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 364, no. 1-3, pp. 72-81, 2010.
    [24] S. H. Mahmood, "Thermodynamic Investigation of the Interaction between Polymer and Gases," 2017.
    [25] T. Ishikawa, K. Taki, and M. Ohshima, "Visual observation and numerical studies of N2 vs. CO2 foaming behavior in core‐back foam injection molding," Polymer Engineering & Science, vol. 52, no. 4, pp. 875-883, 2012.
    [26] W. Michaeli, K. Westermann, and S. Sitz, "Extrusion of physically foamed rubber profiles," Journal of Cellular Plastics, vol. 47, no. 5, pp. 483-495, 2011.
    [27] S. Kim, J. Lee, C. Park, and M. Sain, "Enhancing cell nucleation of thermoplastic polyolefin foam blown with nitrogen," Journal of applied polymer science, vol. 118, no. 3, pp. 1691-1703, 2010.
    [28] Z. X. Zhang, T. Zhang, D. Wang, X. Zhang, Z. Xin, and K. Prakashan, "Physicomechanical, friction, and abrasion properties of EVA/PU blend foams foamed by supercritical nitrogen," Polymer Engineering & Science, vol. 58, no. 5, pp. 673-682, 2018.
    [29] 林宏全, "不同超臨界流體物理發泡下發泡參數對乙烯醋酸乙烯酯共聚物發泡材之影響," 碩士, 纖維與複合材料學系, 逢甲大學, 台中市, 2020.
    [30] N. Chen, The effects of crosslinking on foaming of EVA. University of Toronto (Canada), 2012.
    [31] M. A. Jacobs, M. F. Kemmere, and J. T. Keurentjes, "Foam processing of poly (ethylene-co-vinyl acetate) rubber using supercritical carbon dioxide," Polymer, vol. 45, no. 22, pp. 7539-7547, 2004.
    [32] G. Li, Thermodynamic investigation of the solubility of physical blowing agents in polymer melts. University of Toronto, 2007.
    [33] G. Li, H. Li, J. Wang, and C. Park, "Investigating the solubility of CO2 in polypropylene using various EOS models," Cellular Polymers, vol. 25, no. 4, pp. 237-248, 2006.
    [34] P. A. Rodgers, "PRESSURE VOLUME TEMPERATURE RELATIONSHIPS FOR POLYMERIC LIQUIDS - A REVIEW OF EQUATIONS OF STATE AND THEIR CHARACTERISTIC PARAMETERS FOR 56 POLYMERS," Journal of Applied Polymer Science, vol. 48, no. 6, pp. 1061-1080, May 1993.
    [35] Y. G. G. Li, Development of a novel visualization and measurement apparatus for the PVT behaviours of polymer/gas solutions. University of Toronto, 2008.
    [36] Z. A. A. Ahmed, "Modification of asphalt binder with various percentages of crumb rubber in flexible pavement," Universiti Teknologi Malaysia, 2016.
    [37] S. M. Heilmann, F. J. Palensky, and J. K. Rasmussen, "Radiation-curable polymers," ed: Google Patents, 1983.
    [38] M. Zurina, H. Ismail, and C. Ratnam, "Characterization of irradiation-induced crosslink of epoxidised natural rubber/ethylene vinyl acetate (ENR-50/EVA) blend," Polymer Degradation and Stability, vol. 91, no. 11, pp. 2723-2730, 2006.
    [39] F. M. Precopio and A. R. Gilbert, "Curable polyethylene composition comprising a peroxide containing tertiary carbon atoms, and a filler, and process of curing same," ed: Google Patents, 1959.
    [40] V. Bounor-Legaré, I. Ferreira, A. Verbois, P. Cassagnau, and A. Michel, "New transesterification between ester and alkoxysilane groups: application to ethylene-co-vinyl acetate copolymer crosslinking," Polymer, vol. 43, no. 23, pp. 6085-6092, 2002.
    [41] Y. Goutille, C. Carrot, J.-C. Majeste, and F. Prochazka, "Crosslinking in the melt of EVA using tetrafunctional silane: gel time from capillary rheometry," Polymer, vol. 44, no. 11, pp. 3165-3171, 2003.
    [42] X. Qi et al., "Design of ethylene-vinyl acetate copolymer fiber with two-way shape memory effect," Polymers, vol. 11, no. 10, p. 1599, 2019.
    [43] A. Hedir, M. Moudoud, N. Benamrouche, and F. Bellabas, "Behavior of crosslinked polyethylene insulation of medium and high voltage power cables under Uv radiations," Journal of Electrical Engineering, vol. 17, no. 2, 2017.
    [44] B. D. Fairbanks, M. P. Schwartz, C. N. Bowman, and K. S. Anseth, "Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility," Biomaterials, vol. 30, no. 35, pp. 6702-6707, 2009.
    [45] H. Xue, Y. Ye, X. Li, J. Xia, and Q. Lin, "Nano‐silica modification of UV‐curable EVA resin for additive manufacturing," Polymer Engineering & Science, vol. 60, no. 7, pp. 1579-1587, 2020.
    [46] Y.-W. Fu, W.-F. Sun, and X. Wang, "UV-initiated crosslinking reaction mechanism and electrical breakdown performance of crosslinked polyethylene," Polymers, vol. 12, no. 2, p. 420, 2020.
    [47] D. Yao, B. Qu, and Q. Wu, "Photoinitiated crosslinking of ethylene‐vinyl acetate copolymers and characterization of related properties," Polymer Engineering & Science, vol. 47, no. 11, pp. 1761-1767, 2007.
    [48] 何志松 and 王維廷, "探討聚酯壓克力樹脂配方對性質之影響," Journal of Science and Engineering Technology, vol. 13, no. 2, pp. 33-43, 2017.
    [49] B. Rånby, "Photochemical modification of polymers—photocrosslinking, surface photografting, and lamination," Polymer Engineering & Science, vol. 38, no. 8, pp. 1229-1243, 1998.
    [50] G. Odian, Principles of polymerization. John Wiley & Sons, 2004.
    [51] 赵志杰, 李蕾, and 高杨, "一種高溫低壓縮永久變形的EVA發泡材料及其製備方," 中國, 2014.
    [52] 盧鑫, "一種低壓縮變形的發泡鞋底及其製備方法," 中華人民共和國國家知識產權局, 2016.
    [53] J. J. Laureto and J. M. Pearce, "Anisotropic mechanical property variance between ASTM D638-14 type i and type iv fused filament fabricated specimens," Polymer Testing, vol. 68, pp. 294-301, 2018.
    [54] A. Mohebbi, F. Mighri, A. Ajji, and D. Rodrigue, "Current issues and challenges in polypropylene foaming: a review," Cellular Polymers, vol. 34, no. 6, pp. 299-338, 2015.
    [55] O. Bianchi, R. Fiorio, J. Martins, A. Zattera, C. Scuracchio, and L. Canto, "Crosslinking kinetics of blends of ethylene vinyl acetate and ground tire rubber," Journal of Elastomers & Plastics, vol. 41, no. 2, pp. 175-189, 2009.
    [56] Z. Ma, G. Zhang, Q. Yang, X. Shi, and A. Shi, "Fabrication of microcellular polycarbonate foams with unimodal or bimodal cell-size distributions using supercritical carbon dioxide as a blowing agent," Journal of Cellular Plastics, vol. 50, no. 1, pp. 55-79, 2014.
    [57] W. Zhai, J. Yu, L. Wu, W. Ma, and J. He, "Heterogeneous nucleation uniformizing cell size distribution in microcellular nanocomposites foams," Polymer, vol. 47, no. 21, pp. 7580-7589, 2006.
    [58] H. K. Dave et al., "Compressive strength of PLA based scaffolds: effect of layer height, infill density and print speed," Int J Mod Manuf Technol, vol. 11, no. 1, pp. 21-7, 2019.

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE