| 研究生: |
林松榆 Lin, Son-Yu |
|---|---|
| 論文名稱: |
聚芴系共聚物合成及在發光二極體之應用 Synthesis of polyfluorene copolymers and their applications in PLED |
| 指導教授: |
許聯崇
hsu, S. L. C. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 聚芴 、光激光 、電激光 、有機發光二極體 、共軛高分子 、塞吩 |
| 外文關鍵詞: | polyfluorene, pled, electroluminescence, photoluminescence, conjugated polymer, thiophene |
| 相關次數: | 點閱:68 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
Polyfluorene是發藍光的材料,具有高量子效率(光激發光和電激發光;PL & EL)、良好的熱穩定性、抗氧化能力、溶解度及易調整發光波長等特性,缺點是會有聚集還有分子間激發態(excimer)發光的問題產生,影響發光光色。我選擇兩種堅硬且低能階差的thiophene以及benzothiadiazole單體與fluorene共聚合後,利用Yamamoto的聚合方法,將fluorene單體分別與thiophene及benzothiadiazoe單體共聚合出poly(9,9-dioctyl-2,7-fluorene)(PDOF)、poly (9,9-dioctylfluorene- co-3-octylthiophene)( PFT )及poly( 9,9-dioctylfluorene-co-2,1,3-benzo- thiadiazole)(PFB)三種不同結構之可溶性共軛高分子,結構已由FTIR及1H-NMR圖譜鑑定。
經由光激光(PL)光譜分析,發現共聚合物波長確實產生紅移現象,且未發現明顯由excimer所造成的影響,並經TGA及DSC分析發現,PFB的玻璃轉移溫度有上升,但PFT與PFB共聚物的熱裂解溫度反而下降。最後製作出雙層元件:ITO/PEDOT/Polymer/Ca-Al,在電場的作用下,進行電激光(EL)光譜與輝度量測(I-V-B)分析。
Abstract
Polyfluorene and its derivatives(PFs) have the advantages of high efficient blue emission in both photoluminescence and electroluminescence, high thermal stability, good oxidative resistance, good solubility, and tunability of emission wavelength. However, the main drawbacks of (PFs), such as aggregation and/or excimers formation in the solid state, limit their uses in polymer light emitting diode(PLED). In this study, I copolymerized dioctylfluorene with octylthiophene or benzothiadiazole moieties, which have rigid backbone and lower band gap. Three kinds of soluble random conjugated copolymers comprised of dioctylfluorene and octylthiophene or benzothiadiazole were synthesized by Nickel-catalyzed Yamamoto coupling reaction. They are poly(9,9-dioctyl-2,7-fluorene)(PDOF), poly (9,9-dioctylfluorene-co-3- octyl-thiophene)(PFT) and poly(9,9-dioctyl-fluorene-co-benzothiadiazole) (PFB). All of the polymers were characterized by FT-IR and 1H-NMR.
With the advantage of this research approach, I didn’t find aggregation or excimers formation by photoluminescence spectrometer analysis. I did find the red-shift in their photoluminescence spectra. By TGA and DSC analysis, I found that the glass transition temperature(Tg) of PFB increased, but the thermal degradation temperatures(T5d) of copolymers PFT and PFB decreased. Finally, I have fabricated a double layer device, ITO/ PEDOT/Polymer/Ca-Al, and measured their EL spectra and luminance parameters.
參考文獻
(1) H. Shirakawa, C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, E. J. Louis, S. C. Gau, A. G. MacDiarmid, Phy. Rev. Lett. 1977, pp. 1098.
(2) Y.Ohmori, M. Uchida, K. Muro, K. Yoshino, Jpn. J. Appl. Phys., 1991, 30, L1941.
(3) X. Zhan, Y. Liu, X. Wu, S. Wang, D. Zhu, Macromolecules, 2002, vol.35, pp. 2529.
(4) N. S. Cho, D.-H. Hwang, J.-I. Lee, , B-J. Jung, H.-K. Shim, Macromolecules, 2002. vol. 35, pp. 1224.
(5) M. Kreyenschmidt, G. Klaerner, T. Fuhrer, J. Ashenhurst, S. Karg, W. D. Chen, V. Y. Lee, J. C. Scott, R. D. Miller, Macromolecules, 1998, 31, pp. 1099.
(6) G. Kla¨rner, M. H. Davey, W. D. Chen, J. C. Scott, R. D. Miller, Adv. Mater., 1998, 10, pp. 993.
(7) 方麒榮,國立中山大學材料科學研究所,碩士論文,2003。
(8) H. Becker, H. Spreitzer, W. Kreuder, E. Kluge, H. Vestweber, H. Schenk and K. Treacher, Synth. Met., 2001, 122, pp. 105.
(9) For some examples of Wittig polymerization see (a) K.D.Gourley, C. P. Lillya, J. R. Reynolds and J. C. W. Chien, Macromolecules, 1984, 17, pp. 1025; (b) Z.-K. Chen, H. Meng, Y.-H Lai and W. Huang, Macromolecules, 1999, 32, pp. 4351; (c) T. Ahn, S.-Y. Song and H.-K. Shim, Macromolecules, 2000, 33, pp. 6764.
(10) K. Yoshino, S. Hayashi and R. Sugimoto, Jpn. J. Appl. Phys., 1984, 23, pp. 899.
(11) G. Tourillon and F. Garnier, J. Electro. anal. Chem., 1982, 135, pp. 173.
(12) F. Babudri, G. M. Farinola and F. Naso, J. Mater. Chem., 2004, 14, pp. 11.
(13) D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, Harcourt Brace & Co., 1998, pp. 357.
(14) S. F. Alvarado, P. F. Seidler, D. G. Lidzey, D. D. C. Bradley, Phys. Rev. Lett., 1998, 81, pp. 1082.
(15) J. M. Lupton, J. Klein, Synthetic Metals, 2003, 138, 233~236.
(16) W. Yang, J. Huang, C. Liu, Y. Niu, Q. Hou, R. Yang, Y. Cao, Polymer, 2004, 45, pp. 865.
(17) S. Gamerith, C. Gadermaier, U. Scherf, and E. J. W. List, phys. stat. sol, 2004, 201, No. 6, pp. 1132.
(18) M. Gaal, E. J. W. List and U. Scherf, Macromolecules, 2003, 36, pp. 4236.
(19) J. Jacob, J. Zhang, A. C. Grimsdale, K. Mullen, M. Gaal, E. J. W. List, Macromolecules, 2003, 36 ( 22 ), pp. 8240.
(20) (a) T. Forster, Ann. Physik, 1948, 2, pp. 55. (b) T. Forster, Disc. Faraday Soc., 1959, 27, pp. 7.
(21) D. L. Dexter, J. Chem. Phys., 1953, 21, pp. 836.
(22) Y. Chen, Y. Araki, J. Doyle, A. Strevens, O. Ito, and W. J. Blau, Chem. Mater. 2005, 17, pp. 1661~1666.
(23) M. Zhang, P. Lu, X. Wang, L. He, H. Xia, W. Zhang, B. Yang, L. Liu, M. yang, Y. Ma, J. Feng, D. Wang, and N. Tamai, J. Phys. Chem. B, 2004, 108, pp. 13185.
(24) (a) 翁文國、林振華;工業材料,156期,p 75,民88年。(b)H. Ishii, K. Sugiyama, E. Ito, K. Seki, Adv. Mater., 1999, 11, pp. 605.
(25) P. K. H. Ho, M. Granström, R. H. Friend, N. C. Greenham, Adv. Mater., 1998, 10, pp. 769.
(26) S. A. Carter, M. Angelopoulos, S. Karg, P. J. Brock, J. C. Scott, Appl. Phys. Lett., 1997, 70, pp. 2067.
(27) J. S. Kim, M. Granström, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, F. Cacialli, J. Appl. Phys., 1998, 84, pp. 6859.
(28) S. K. Sol, W. K. Choil, C. H. Chengl, L. M. Leung, C. F. Kwong, Appl. Phys. A, 1999, 68, pp. 447.
(29) F. Nüesch, E. W. Forsythe, Q. T. Le, Y. Gao, L. J. Rothberg, J. Appl. Phys., 2000, 87, pp. 7973.
(30) 黃孝文,國立成功大學化學工程研究所,博士論文,2001。
(31) K. Pilgram, M. Zupan, R. Skiles, J. Heterocycl. Chem., 1970, 7, pp. 629.
(32) P. Herguth, X. Jiang, M. S. Liu, and A. K.-Y. Jen, Macromolecules 2002, 35, pp. 6094.
(33) C. Xia and R. C. Advincula, Macromolecules, 2001, 34, pp. 5854.
(34) N. S. Cho, D.-H. Hwang, B.-J. Jung, J. Oh, H. Y. Chu, H.-K. Shim, Synthetic Metals, 2004, 143, pp. 277.
(35) H.-J. Cho, B.-J. Jung, N. S. Cho, J. Lee, and H.-K. Shim, Macromolecules, 2003, 36, pp. 6704.
(36) Y.-S. Suh, S. W. Ko, B.-J. Jung, H.-K. Shim, Optical Materials, 2002, 21, pp. 109.
(37) T. Yamamoto, A. Morita, Y. Miyazaki, T. Maruyama, H. Wakayama, Z.-h. Zhou, Y. Nakamura, T. Kanbara, S. Sasaki, K. Kubota, Macromolecules, 1992, 25, pp. 1214.
(38) J. H. Park, Y. T. Lim, O. O. Park, J. K. Kim, J.-W. Yu, and Y. C. KIM, Adv. Funct. Mater., 2004, 14, No 4, pp. 377.
(39) B. Liu, W.-L. Yu, Y.-H. Lai, and W. Huang, Macromolecules, 2000, 33, pp. 8945.
(40) W.-J. Lin, W.-C. Chen, W.-C. Wu, Y.-H. Niu, and A. K.-Y. Jen, Macromolecules, 2004, 37, pp. 2335.
(41) M. Ranger, D. Rondeau, and M. Leclerc, Macromolecules, 1997, 30, pp. 7686.
(42) S.-H. Ahn, M.-z. Czae, E.-R. Kim, H. Lee, S.-H. Han, J. Noh and M. Hara, Macromolecules 2001, 34, pp. 2522.