簡易檢索 / 詳目顯示

研究生: 高駿青
Fauzy, Annas
論文名稱: 印尼風力發電潛力評估
Evaluations on Wind Power Potential in Indonesia
指導教授: 林大惠
Lin, Ta-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 71
中文關鍵詞: 風能印度尼西亞WRF發電量WindSim財務分析平均發電成本(LCoE)
外文關鍵詞: Wind energy, Indonesia, Weather research and forecasting, Energy production, WindSim, Economic analysis, Levelized cost of electricity
相關次數: 點閱:119下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 印度尼西亞(簡稱印尼)為一赤道型氣候的國家,四季如夏,全年之日照充足,溫差亦不大,但因氣候變化穩定,同時也導致風力能源的發展受到限制。印尼是一個迫切需要再生替代能源的熱帶國家,各種相關替代能源的潛力目前仍在研究探討當中。本研究的目的即藉由印尼風場的特性以及根據現有之風力資料估計風能之生產量,進一步分析印尼建設風場的可能性。
    本研究引用100m WRF 共11年之數據資料,採樣時間為每小時一筆,從2004 年1 月1 日至2015 年12 月31 日。研究中分析的評估資料主要來自七個選定地區的風速趨勢,並透過三個選定的風力發電機及藉由其功率曲線來估計與評定發電量,以獲得建立風場的可行位置。模擬案例的部分則在最佳位置利用WindSim 進行模擬,藉由不同類型之風力發電機特性,以獲得最佳的風場大小和佈局。此外,研究中也藉由WindSim之模擬結果,進一步進行財務分析,不僅從能源角度同時也從財務的角度中得到一個更精確的分析。
    研究結果顯示,使用Gamesa-G114 型號的風力發電機的風場可得到一個最好的佈局。而利用WindSim 軟體所估計的發電量為389.9 GWh /每年。在風場中基於時間之可用性為46%,基於電力之可用性為75.64%。這兩個比率為所選定的地點與風力發電機類型中最好的結果。財務分析部分則藉由發電量與財務的線性關係進行估計。在Gamesa-G114 風力發電機的案例中,NPV為48.6 百萬、LCoE(可作為印尼再生能源價格的參考值)為0.082kWh,在建設風場之後的貼現回收期為16 年,與其他種類發電機比較亦為最快回收的機種。

    Indonesia is one of the tropical countries located near the equator line that has some renewables energy potential that needs to explore. This study aims to investigate the circumstances to establish a wind farm in potential regions with three onshore (namely, Banyuwangi, Baron, Lebak, Sukabumi) and four offshore (namely, Jeneponto, Wetar Island, Banten).
    The best-prospected sites selected by applying wind speed trend and estimated power production analysis using 100 m height WRF (Weather Research and Forecasting) wind dataset in potential regions. The result shows that Wetar Island is the best-prospected location to establish a wind farm. The simulation cases using WindSim software conducted in Wetar Island with three variations areas (Area-1, Area-2, and Area-3 ), and three variations of wind turbines (Vestas-V100, Nordex-N90, Gamesa-G114) to get the best wind farm size and layout design. Economic analysis has performed at the wind farm design in Wetar Island using a discounted cash flow models that consider Indonesia renewable energy scheme.
    Among the technical analysis scenarios, the Area-1 using Gamesa-G114 wind turbine is the best variation result with produce 389.9 GWh per annum, 46 % time-based availability, and 75.64 % power-based availability. Economic analysis also shows Area-1 with Gamesa-G114 wind turbine as the most feasible scenario with 48,6 Million USD Net Present Value (NPV). Additionally, the 0.082 USD/kWh of Levelized Cost of Electricity (LCoE) which have a close price with the renewable energy price in Indonesia. The conclusions are meaningful for suggestions on further wind farm development in Indonesia.

    中文摘要 Abstract Acknowledgment Table of Contents i List of Tables iii List of Figures iv List of Symbols vii 1 Introduction 1 1.1 Global Status 1 1.2 Wind Energy Development in South East Asia Region 2 1.3 Indonesia wind condition and development 3 1.4 Aim, objective and limitation 4 2 Literature review 6 2.1 Wind energy estimation 6 2.1.1 Roughness and wind shear 7 2.1.2 Terrain Profile 8 2.1.3 Wind power 8 2.1.4 Turbulence 9 2.1.5 Wake effect and modeling 10 2.1.6 Statistic of wind energy 11 2.2 Wind turbine 12 2.2.1 Wind turbine class 12 2.2.2 Power curve 13 2.2.3 Power Estimation 14 2.2.4 Capacity factor 14 2.3 Computational fluid dynamic in wind development 15 2.3.1 The principle of CFD 15 2.3.2 Related equation in CFD 16 2.3.3 The k-ϵ model 17 3 Methodology 19 3.1 Site 19 3.2 Wind dataset 19 3.3 Characterizing the wind properties 22 3.3.1 Wind speed Trends 22 3.3.2 Dataset comparisons 22 3.3.3 Estimated power production 22 3.4 WindSim Software 23 3.5 Economic Analysis on Wind Farm Design 23 4 Characterizing the Wind Properties 24 4.1 Wind speed trends 24 4.2 Dataset Comparisons 26 4.3 Estimated Power Production 28 5 Wind Farm Design and Analysis: Wetar Island 31 5.1 Pre-Simulation 32 5.1.1 Terrain 32 5.1.2 WindSim Settings 35 5.1.3 Wind Dataset 37 5.1.4 Energy Maps 37 5.2 Wind Farm Layout Prediction 38 5.3 WindSim Simulations 41 5.3.1 WindSim Simulation Results 44 5.3.2 Wind Farm Evaluation 45 6 Economic Analysis On a Wind Farm Design 47 6.1 Wind Farm Investment Cost 47 6.1.1 CAPEX 48 6.1.2 OPEX 50 6.1.3 Cost Analysis 50 6.2 Investment Indicator 54 6.2.1 AEP and wind farm revenue 56 6.2.2 NPV, DPBP and LCoE 57 7 Conclusions and Future Works 59 7.1 Conclusions 59 7.2 Future works 60 References 61 Appendix A 64 Appendix B 66 Appendix C 68

    [1] J. L. Sawin, F. Sverrisson, J. Rutovitz, S. Dwyer, S. Teske, H. E. Murdock, R. Adib, F. Guerra, L. H. Blanning, V. Hamirwasia, A. Misra, K. Satzinger, L. E. Williamson, M. Lie, A. Nilsson, E. Aberg, S. Weckend, H. Wuester, R. Ferroukhi, C. Garcia, A. Khalid, M. Renner, M. Taylor, B. Epp, K. Seyboth, J. Skeen, G. Kamiya, L. Munuera, F. Appavou, A. Brown, B. Kondev, E. Musolino, L. Mastny, and L. Arris, Renewables 2018 - Global status report. Montreal, QC, CA: REN21, 2018.
    [2] J. L. Sawin, F. Sverrisson, K. Seyboth, R. Adib, H. E. Murdock, C. Lins, I. Ed- wards, M. Hullin, L. H. Nguyen, S. S. Prillianto, K. Satzinger, F. Appavou, A. Brown, I. Chernyakhovskiy, J. Logan, M. Milligan, O. Zinaman, B. Epp, L. Huber, L. Lyons, T. Nowak, P. Otte, J. Skeen, B. Sovacool, B. Witkamp, E. Musolino, L. E. Williamson, L. Ashworth, and L. Mastny, Renewables 2017 : Global Status Report. Montreal, QC, CA: REN21, 2017.
    [3] F. K. Lutgens, E. J. Tarbuck, and D. G. Tasa, The Atmosphere: An Introduction to Meteorology (13th Edition) (MasteringMeteorology Series). Pearson, 2015.
    [4] P. Quan and T. Leephakpreeda, “Assessment of wind energy potential for selecting wind turbines: An application to thailand,” Sustainable Energy Technologies and Assessments, vol. 11, pp. 17–26, 2015.
    [5] K. M. Nor, M. Shaaban, and H. A. Rahman, “Feasibility assessment of wind energy resources in malaysia based on nwp models,” Renewable Energy, vol. 62, pp. 147–154, 2014.
    [6] K. Q. Nguyen, “Wind energy in vietnam: Resource assessment, development status and future implications,” Energy Policy, vol. 35, no. 2, pp. 1405–1413, 2007.
    [7] N.Wagner, D.Saygin, Y.Chen, and B.Suryadi, Renewable Energy Outlook for ASEAN: A REmap Analysis. IRENA and ACE, October 2016.
    [8] D. Yuliani, “Is feed-in-tariff policy effective for increasing deployment of renewable energy in indonesia,” The Political Economy of Clean Energy Transitions, p. 144, 2016.
    [9] T. Hardianto, B. Supeno, A. Saleh, D. K. Setiawan, S. Indra, et al., “Potential of wind energy and design configuration of wind farm on puger beach at jember indonesia,” Energy Procedia, vol. 143, pp. 579–584, 2017.
    [10] D. P. Sari and W. B. Kusumaningrum, “A technical review of building integrated wind turbine system and a sample simulation model in central java, indonesia,” Energy Pro- cedia, vol. 47, pp. 29–36, 2014.
    [11] S. Martosaputro and N. Murti, “Blowing the wind energy in indonesia,” Energy Procedia, vol. 47, pp. 273–282, 2014.
    [12] V. Nelson and K. Starcher, Wind energy: renewable energy and the environment. CRC press, 2018.
    [13] M. Lei, L. Shiyan, J. Chuanwen, L. Hongling, and Z. Yan, “A review on the forecasting of wind speed and generated power,” Renewable and Sustainable Energy Reviews, vol. 13, no. 4, pp. 915–920, 2009.
    [14] A. R. J. Ph.D., Wind Turbine Technology. CRC Press, August 2010.
    [15] R. B. Stull, An introduction to boundary layer meteorology, vol. 13. Springer Science & Business Media, 2012.
    [16] J. F. Manwell, J. G. McGowan, and A. L. Rogers, Wind energy explained: theory, design and application. John Wiley & Sons, 2010.
    [17] I. E. Committee et al., “International electrotechnical committee (iec) 61400-1,” Wind turbines—Part, vol. 1, 2017.
    [18] I. E. Commission et al., “Iec 61400-3 wind turbines part3: Design requirements for offshore wind turbines,” International Electrotechnical Commission: Geneva, Switzer- land, 2009.
    [19] V. L. Okulov and G. A. van Kuik, “The betz–joukowsky limit: on the contribution to rotor aerodynamics by the british, german and russian scientific schools,” Wind Energy, vol. 15, no. 2, pp. 335–344, 2012.
    [20] H. K. Versteeg and W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method. Pearson education, 2007.
    [21] P. Nielsen, “Windpro 2.7 user guide 3. edition,” EMD International A/S, 2010.
    [22] F. González-Longatt, P. Wall, and V. Terzija, “Wake effect in wind farm performance: Steady-state and dynamic behavior,” Renewable Energy, vol. 39, no. 1, pp. 329–338, 2012.
    [23] K. Rados, J. Prospathopoulos, N. C. Stefanatos, E. Politis, P. Chaviaropoulos, and A. Zervos, “Cfd modeling issues of wind turbine wakes under stable atmospheric conditions,” in European wind energy conference & exhibition proceedings, Parc Chanot, Marseille, France, pp. 16–19, 2009.
    [24] S. Mathew, Wind Energy Fundamentals, Resource Analysis and Economics. Springer, 2006.
    [25] T. Burton, D. Sharpe, N. Jenkins, and E. Bossanyi, Wind Energy Handbook. John Wiley & Sons, 2001.
    [26] P. H. Madsen and D. Risø, “Introduction to the iec 61400-1 standard,” Risø National Laboratory, Technical University of Denmark, 2008.
    [27] M. Bilal, Y. Birkelund, M. Homola, and M. S. Virk, “Wind over complex terrain– microscale modeling with two types of mesoscale winds at nygårdsfjell,” Renewable energy, vol. 99, pp. 647–653, 2016.
    [28] EMD International A/S, “windprospecting — Wind Energy Resources of Indonesia.” http://indonesia.windprospecting.com/, 2016. [Online; accessed 23-July- 2019].
    [29] Wikipedia contributors, “Climate of indonesia — Wikipedia, the free encyclopedia.”
    https://en.wikipedia.org/w/index.php?title=Climate_of_Indonesia& oldid=872165021, 2018. [Online; accessed 23-July-2019].
    [30] Wikipedia contributors, “Sentinel-2 — Wikipedia, the free encyclopedia.” https:// en.wikipedia.org/w/index.php?title=Sentinel-2&oldid=903322796, 2019. [Online; accessed 23-July-2019].
    [31] U. Cali, N. Erdogan, S. Kucuksari, and M. Argin, “Techno-economic analysis of high potential offshore wind farm locations in turkey,” Energy strategy reviews, vol. 22, pp. 325–336, 2018.
    [32] A. G. Gonzalez-Rodriguez, “Review of offshore wind farm cost components,” Energy for Sustainable Development, vol. 37, pp. 10–19, 2017.
    [33] J. Rebled Lluch, “Power transmission systems for offshore wind farms: Technical- economic analysis,” B.S. thesis, Universitat Politècnica de Catalunya, 2015.
    [34] M. Dicorato, G. Forte, M. Pisani, and M. Trovato, “Guidelines for assessment of investment cost for offshore wind generation,” Renewable energy, vol. 36, no. 8, pp. 2043– 2051, 2011.
    [35] G. Quinonez-Varela, G. Ault, O. Anaya-Lara, and J. McDonald, “Electrical collector system options for large offshore wind farms,” IET Renewable Power Generation, vol. 1, no. 2, pp. 107–114, 2007.

    下載圖示 校內:2019-07-25公開
    校外:2019-07-25公開
    QR CODE