| 研究生: |
施智軒 Shih, Chih-Hsuan |
|---|---|
| 論文名稱: |
銅綠微囊藻在天然水體中和加氯氧化壓力下之基因表現研究 Quantification of Gene Expression of Microcystis aeruginosa in Natural Water and under Chlorination |
| 指導教授: |
林財富
Lin, Tsair-Fuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | RNA 量測 、基因相對表現 、銅綠微囊藻 、微囊藻毒 、細胞完整性 、細胞活性 、加氯氧化(Chlorination) |
| 外文關鍵詞: | RNA measurement, relative gene expression, Microcystis aeruginosa, microcystins, cell integrity, cell activity, chlorination |
| 相關次數: | 點閱:202 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要建立一套藍綠細菌RNA量測方法並將之試用於環境水樣,並以產毒的藍綠細菌,銅氯微囊藻(Microcystis aeruginosa)為研究對象,在加低劑量的氯作為氧化劑後,探討其細胞中毒素基因表現變化和毒素量的增加。RNA量測方法以反轉錄聚合酶鏈式反應(Reverse transcription-PCR, RT-PCR)測量方法為基礎,讓RNA經過萃取、去除DNA殘留片段(DNase treatment)、反轉錄過程從單股RNA轉換成雙股cDNA,再經由即時定量連鎖聚合酶定量系統(quantitative polymerase chain reaction, qPCR)配合Taqman偵測方法進行快速分析。萃取步驟經由實驗測試,更正成適用於萃取藍綠細菌的RNA,後續的去除DNA殘留片段的處理步驟也經測試確立其必要性。此方法在應用於測量環境水樣中,如金門水庫和菲律賓湖泊中,有藍綠細菌存在的水體樣本中的RNA濃度,並將之與水體樣本中的DNA和微囊藻毒素(microcystins)作相關性分析。
在探討加低劑量的氯的氧化實驗中,以流式細胞儀(flow cytometer, FCM)搭配兩種螢光染劑測試其細胞完整性和細胞活性,並以酵素結合免疫吸附分析法(ELISA)分析其細胞產生的微囊藻毒素,DNA和RNA則是以qPCR定量。RNA在計算後以相對表現量(relative expression)表示。研究結果顯示在0.2 mg/L的加氯實驗中,其毒素基因相對表現量和毒素濃度都有微幅的增加,代表著在低劑量氯給予的氧化壓力下,其細胞反應為產毒反應的可能性。相對地,在1 mg/L的加氯實驗中,細胞快速的死亡和其DNA/RNA的降解,代表著不僅是細胞迅速破裂的反應,更顯示其氧化效果可以抑制其毒素基因水平轉移的可能性。本研究可作為後續研究藍綠細菌對淨水處理流程給予氧化環境壓力之細胞變化和基因表現的參考。
Harmful algal blooms (HABs), commonly occurring in reservoirs and lakes, have been a concerning issue for operation of drinking water treatment (DWT) and human health, because of potential existence of toxins produced by algae and cyanobacteria. Among the microorganisms which are found in algal blooms, Microcystis and their associated toxins, microcystins are detected worldwide not only in the reservoirs of Taiwan but also in the lakes and reservoirs of other nations. This study investigated the cellular response of M. aeruginosa PCC7820 to the oxidative stress from common-used oxidants in DWT, Chlorine. The cell integrity, the cell activity, the relative gene expression, DNA damage, and microcystins concentration were measured. To observe the relative gene expression, RNA quantification method was modified and applied in field tests to quantify the RNA of 16S rRNA and mcyB. In field tests, cDNA concentration transformed from mRNA was found highly correlated to microcytins concentration in the samples. The results of oxidation experiments with 0.2 mg/L of chlorine showed an up-regulation of gene expression of mcyB and an increase of total microcystins within 2-3 hours, indicating the rapid response of Microcystis to the oxidative stress from chlorine. The results of increasing microcystins production may cause a potential risk if prechlorination was applied in the DWT with cyanobacteria-laden source water. For oxidation experiments of 1 mg/L of chlorine, both DNA sequence and mRNA strand of mcyB gene were damaged, which may inhibit the horizontal gene transfer of the toxic genes.
Acero, J.L., Rodríguez, E., Majado, M.E., Sordo, A., Meriluoto, J., 2008. Oxidation of microcystin-LR with chlorine and permanganate during drinking water treatment. J. Water Supply Res. Technol. - AQUA 57, 371–380.
Acero, J.L., Rodriguez, E., Meriluoto, J., 2005. Kinetics of reactions between chlorine and the cyanobacterial toxins microcystins. Water Res. 39, 1628–1638.
Adam, G., Duncan, H., 2001. Development of a sensitive and rapid method for the measurement of total microbial activity using ¯uorescein diacetate (FDA) in a range of soils. Soil Biol. Biochem. 33, 943–951.
Al-Tebrineh, J., Pearson, L.A., Yasar, S.A., Neilan, B.A., 2012. A multiplex qPCR targeting hepato- and neurotoxigenic cyanobacteria of global significance. Harmful Algae 15, 19–25.
Arya, M., Shergill, I.S., Williamson, M., Gommersall, L., Arya, N., Patel, H.R., 2005. Basic principles of real-time quantitative PCR. Expert Rev. Mol. Diagn. 5, 209–219.
Botes, D.P., Tuinman, A.A., Wessels, P.L., Viljoen, C.C., Kruger, H., Williams, D.H., Santikarn, S., Smith, R.J., Hammond, S.J., 1984. The structure of cyanoginosin-LA, a cyclic heptapeptide toxin from the cyanobacterium Microcystis aeruginosa. J. Chem. Soc. Perkin Trans. 1 2311.
Breeuwer, P., Drocourt, J.L., Bunschoten, N., Zwietering, M.H., Rombouts, F.M., Abee, T., 1995. Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product. Appl. Environ. Microbiol. 61, 1614–1619.
Carmichael, W.W., Beasley, V., Bunner, D.L., Eloff, J.N., Falconer, I., Gorham, P., Harada, K. ichi, Krishnamurthy, T., Min-Juan, Y., Moore, R.E., Rinehart, K., Runnegar, M., Skulberg, O.M., Watanabe, M., 1988. Naming of cyclic heptapeptide toxins of cyanobacteria (blue-green algae). Toxicon 26, 971–973.
Carmichael, W.W., Boyer, G.L., 2016. Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes. Harmful Algae 54, 194–212.
Chen, J.J., Yeh, H.H., 2005. The mechanisms of potassium permanganate on algae removal. Water Res. 39, 4420–4428.
Chen, L., Gin, K.Y.H., He, Y., 2016. Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa. Environ. Sci. Pollut. Res. 23, 3586–3595.
Chrzanowski, T.H., Crotty, R.D., Hubbard, J.G., Welch, R.P., 1984. Applicability of the fluorecein diacetate method of detecting active bacteria in freshwater. Microb. Ecol. 10, 179–185.
Clarke, J.M., Gillings, M.R., Altavilla, N., Beattie, a. J., 2001. Potential problems with fluorescein diacetate assays of cell viability when testing nautural prodcus for antimicrobial activity. J. Microbiol. Methods 46, 261–267.
Daly, R.I., Ho, L., Brookes, J.D., 2007. Effect of chlorination on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation. Environ. Sci. Technol. 41, 4447–4453.
Dawson, R.M., 1998. Review Article the Toxicology of Microcystins 36, 953–962.
DeRosa, S., Sconza, F., Volterra, L., 1998. Biofilm amount estimation by fluorescein diacetate. Water Res. 32, 2621–2626.
Dittmann, E., Fewer, D.P., Neilan, B.A., 2013. Cyanobacterial toxins: Biosynthetic routes and evolutionary roots. FEMS Microbiol. Rev. 37, 23–43.
Dittmann, E., Neilan, B. a, Erhard, M., vonDöhren, H., Börner, T., 1997. Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Mol. Microbiol. 26, 779–787.
Dorsey, J., Yentsch, C.M., Mayo, S., McKenna, C., 1989. Rapid analytical technique for the assessment of cell metabolic activity in marine microalgae. Cytometry 10, 622–628.
DosSantos, A.P.M.E., Bracarense, A.P.F.R.L., 2008. Hepatotoxicidade associada à microcistina. Semin. Agrar. 29, 417–430.
Edward, G. B., & David, C. S. (2015). Freshwater algae: identification, enumeration and use as bioindicators.
Foster, H.A., Ditta, I.B., Varghese, S., Steele, A., 2011. Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Appl. Microbiol. Biotechnol. 90, 1847–1868.
Gaforio, J.J., Serrano, M.J., Ortega, E., Algarra, I., Alvarez De Cienfuegos, G., 2002. Use of SYTOX green dye in the flow cytometric analysis of bacterial phagocytosis. Cytometry 48, 93–96.
Harada, K.I., Nakano, T., Fujii, K., Shirai, M., 2004. Comprehensive analysis system using liquid chromatography-mass spectrometry for the biosynthetic study of peptides produced by cyanobacteria. J. Chromatogr. A 1033, 107–113.
Hawkins, C.L., Davies, M.J., 2002. Hypochlorite-Induced Damage to DNA, RNA, and Polynucleotides: Formation of Chloramines and Nitrogen-Centered Radicals. Chem. Res. Toxicol. 15, 83–92.
Henderson, R., Parsons, S.A., Jefferson, B., 2008. The impact of algal properties and pre-oxidation on solid-liquid separation of algae. Water Res. 42, 1827–1845.
Ho, L., Onstad, G., Gunten, U.Von, Rinck-Pfeiffer, S., Craig, K., Newcombe, G., 2006. Differences in the chlorine reactivity of four microcystin analogues. Water Res. 40, 1200–1209.
Huo, X., Chang, D.W., Tseng, J.H., Burch, M.D., Lin, T.F., 2015. Exposure of Microcystis aeruginosa to hydrogen peroxide under light: Kinetic modeling of cell rupture and simultaneous microcystin degradation. Environ. Sci. Technol. 49, 5502–5510.
Hureiki, L., Croué, J.P., Legube, B., 1994. Chlorination studies of free and combined amino acids. Water Res. 28, 2521–2531.
Ibelings, B.W., Chorus, I., 2007. Accumulation of cyanobacterial toxins in freshwater “seafood” and its consequences for public health: A review. Environ. Pollut.
Jang, M.H., Ha, K., Lucas, M.C., Joo, G.J., Takamura, N., 2004. Changes in microcystin production by Microcystis aeruginosa exposed to phytoplanktivorous and omnivorous fish. Aquat. Toxicol. 68, 51–59.
Kaebernick, M., Neilan, B. a, Börner, T., Dittmann, E., 2000a. Light and the transcriptional response of the microcystin biosynthesis gene cluster. Appl. Environ. Microbiol. 66, 3387–92.
Kaebernick, M., Neilan, B.A., Börner, T., Bo, T., 2000b. Light and the Transcriptional Response of the Microcystin Biosynthesis Gene Cluster Light and the Transcriptional Response of the Microcystin Biosynthesis Gene Cluster 66, 3387–3392.
Komarek, J., Kling, H., Kom´arkov´a, J., 2003a. Filamentous cyanobacteria. In Wehr, J.D., Sheath, R.G. (eds.). Freshwater Algae of North America. Amsterdam, The Netherlands, Academic Press, pp. 117–196.
Lewin, R.A. (1976). Naming the blue-greens. Nature 259, 360.
Lin, J.L., Hua, L.C., Hung, S.K., Huang, C., 2016. Algal removal from cyanobacteria-rich waters by preoxidation-assisted coagulation-flotation: Effect of algogenic organic matter release on algal removal and trihalomethane formation. J. Environ. Sci. (China) 63, 147–155.
Lin, T.F., Chang, D.W., Lien, S.K., Tseng, Y.S., Chiu, Y.T., Wang, Y.S., 2009. Effect of chlorination on the cell integrity of two noxious cyanobacteria and their releases of odorants. J. Water Supply Res. Technol. - AQUA 58, 539–551.
Liu, B., Qu, F., Chen, W., Liang, H., Wang, T., Cheng, X., Yu, H., Li, G., Van derBruggen, B., 2017. Microcystis aeruginosa-laden water treatment using enhanced coagulation by persulfate/Fe(II), ozone and permanganate: Comparison of the simultaneous and successive oxidant dosing strategy. Water Res. 125, 72–80.
Liu, Y., Chen, S., Chen, X., Zhang, J., Gao, B., 2015a. Interactions between Microcystis aeruginosa and coexisting amoxicillin contaminant at different phosphorus levels. J. Hazard. Mater. 297, 83–91.
Liu, Y., Wang, F., Chen, X., Zhang, J., Gao, B., 2015b. Influence of coexisting spiramycin contaminant on the harm of Microcystis aeruginosa at different nitrogen levels. J. Hazard. Mater. 285, 517–524.
Liu, Y., Zhang, J., Gao, B., 2015c. Cellular and Transcriptional Responses in Microcystis aeruginosa Exposed to Two Antibiotic Contaminants. Microb. Ecol. 69, 535–543.
Livak, K.J., Schmittgen, T.D., 2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 25, 402–408.
Lu, Y., Wang, J., Yu, Y., Shi, L., Kong, F., 2014. Changes in the physiology and gene expression of Microcystis aeruginosa under EGCG stress. Chemosphere 117, 164–169.
Lukač, M., Aegerter, R., 1993. Influence of trace metals on growth and toxin production of Microcystis aeruginosa. Toxicon 31, 293–305.
Ma, M., Liu, R., Liu, H., Qu, J., 2012a. Chlorination of Microcystis aeruginosa suspension: Cell lysis, toxin release and degradation. J. Hazard. Mater. 217–218, 279–285.
Ma, M., Liu, R., Liu, H., Qu, J., Jefferson, W., 2012b. Effects and mechanisms of pre-chlorination on Microcystis aeruginosa removal by alum coagulation: Significance of the released intracellular organic matter. Sep. Purif. Technol. 86, 19–25.
Mastrangelo, D., Squitieri, N., Bruni, S., Hdjistilianou, T., Frezzotti, R., 1997. CURRENT RESEARCH The Polymerase Chain Reaction ( PCR ) In The Routine Genetic Characterization Of Retinoblastoma : A Tool For The Clinical Laboratory. Surv. Ophthalmol. 41, 00004-5.
Michinaka, A., Yen, H.K., Chiu, Y.T., Tsao, H.W., Lin, T.F., 2012. Rapid on-site multiplex assays for total and toxigenic Microcystis using real-time PCR with microwave cell disruption. Water Sci. Technol. 66, 1247–1252.
Moreira, C., Ramos, V., Azevedo, J., Vasconcelos, V., 2014. Methods to detect cyanobacteria and their toxins in the environment. Appl. Microbiol. Biotechnol. 98, 8073–8082.
Orr, P.T., Orr, P.T., 2001. Cellular Microcystin Content in N-Limited. Microbiology 67, 278–283.
Pearson, L.A., Neilan, B.A., 2008. The molecular genetics of cyanobacterial toxicity as a basis for monitoring water quality and public health risk. Curr. Opin. Biotechnol.
Pimentel, J.S.M., Giani, A., 2014. Microcystin production and regulation under nutrient stress conditions in toxic Microcystis strains. Appl. Environ. Microbiol. 80, 5836–5843.
Plummer, J.D., Edzwald, J.K., 2002. Effects of chlorine and ozone on algal cell properties and removal of algae by coagulation. J. Water Supply Res. Technol. - AQUA 51, 307–318.
Prinsep, M.R., Caplan, F.R., Moore, R.E., Patterson, G.M.L., E. Honkanen, R., Boynton, A.L., 1992. Microcystin-la from a blue-green alga belonging to the stigonematales. Phytochemistry 31, 1247–1248.
Qi, J., Lan, H., Liu, R., Miao, S., Liu, H., Qu, J., 2016. Prechlorination of algae-laden water: The effects of transportation time on cell integrity, algal organic matter release, and chlorinated disinfection byproduct formation. Water Res. 102, 221–228.
Qian, H., Yu, S., Sun, Z., Xie, X., Liu, W., Fu, Z., 2010. Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa. Aquat. Toxicol. 99, 405–412.
Rastogi, R.P., Madamwar, D., Incharoensakdi, A., 2015. Bloom dynamics of cyanobacteria and their toxins: Environmental health impacts and mitigation strategies. Front. Microbiol. 6, 1–22.
Rinehart, K.L., Namikoshi, M., Choi, B.W., 1994. Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). J. Appl. Phycol. 6, 159–176.
Rodas, V.L., Costas, E., 1999. Preference of mice to consume Microcystis aeruginosa (Toxin-producing cyanobacteria): A possible explanation for numerous fatalities of livestock and wildlife. Res. Vet. Sci. 67, 107–110.
Rodríguez, E., Onstad, G.D., Kull, T.P.J., Metcalf, J.S., Acero, J.L., vonGunten, U., 2007. Oxidative elimination of cyanotoxins: comparison of ozone, chlorine, chlorine dioxide and permanganate. Water Res. 41, 3381–93.
Ross, C., Santiago-Vázquez, L., Paul, V., 2006. Toxin release in response to oxidative stress and programmed cell death in the cyanobacterium Microcystis aeruginosa. Aquat. Toxicol. 78, 66–73.
Saruyama, N., Sakakura, Y., Asano, T., Nishiuchi, T., Sasamoto, H., Kodama, H., 2013. Quantification of metabolic activity of cultured plant cells by vital staining with fluorescein diacetate. Anal. Biochem. 441, 58–62.
Schallreuter, K.U., Elwary, S.M.A., Gibbons, N.C.J., Rokos, H., Wood, J.M., 2004. Activation/deactivation of acetylcholinesterase by H2O2: more evidence for oxidative stress in vitiligo. Biochem. Biophys. Res. Commun. 315, 502–508.
Schnurer, J., Rosswall, T., 1982. Microbial Activity. pp. 1256–1261.
Sevilla, E., Martin-Luna, B., Vela, L., Bes, M.T., Fillat, M.F., Peleato, M.L., 2008. Iron availability affects mcyD expression and microcystin-LR synthesis in Microcystis aeruginosa PCC7806. Environ. Microbiol. 10, 2476–2483.
Shao, J., Wu, Z., Yu, G., Peng, X., Li, R., 2009. Allelopathic mechanism of pyrogallol to Microcystis aeruginosa PCC7806 (Cyanobacteria): From views of gene expression and antioxidant system. Chemosphere 75, 924–928.
Singh, S., Rai, P.K., Chau, R., Ravi, A.K., Neilan, B.A., Asthana, R.K., 2015. Temporal variations in microcystin-producing cells and microcystin concentrations in two fresh water ponds. Water Res. 69, 131–142.
Tee, J.J., 2017. Biostimulation Effect on the Abundance of genus Dehalococcoides and Reductive Dehalogenases in the Chloroethene Contaminated Groundwater, National Cheng Kung University.
Tillett, D., Dittmann, E., Erhard, M., VonDöhren, H., Börner, T., Neilan, B.A., 2000. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: An integrated peptide-polyketide synthetase system. Chem. Biol. 7, 753–764.
Tsao, H.W., Michinaka, A., Yen, H.K., Giglio, S., Hobson, P., Monis, P., Lin, T.F., 2014. Monitoring of geosmin producing Anabaena circinalis using quantitative PCR. Water Res. 49, 416–425.
Vanderwesthuizen, A.J., Eloff, J.N., 1985. Effect of temperature and light on the toxicity and growth of the blue-green-alga Microcystis aeruginosa (UV-006). Planta 163, 55–59.
Verspagen, J.M., Snelder, E.O., Visser, P.M., 2005. Benthic–pelagic coupling in the population dynamics of the harmful cyanobacterium Microcystis. Freshwater Biology 50, 854–867.
Wanandy, S., Brouwer, N., Liu, Q., Mahon, A., Cork, S., Karuso, P., Vemulpad, S., Jamie, J., 2005. Optimisation of the fluorescein diacetate antibacterial assay. J. Microbiol. Methods 60, 21–30.
Wang, J., Liu, Q., Feng, J., Lv, J., Xie, S., 2016. Effect of high-doses pyrogallol on oxidative damage, transcriptional responses and microcystins synthesis in Microcystis aeruginosa TY001 (Cyanobacteria). Ecotoxicol. Environ. Saf. 134, 273–279.
Wang, Z., Song, G., Shao, J., Tan, W., Li, Y., Li, R., 2016. Establishment and field applications of real-time PCR methods for the quantification of potential MIB-producing cyanobacteria in aquatic systems. J. Appl. Phycol. 28, 325–333.
Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., Losick, R., 2014. Molecular Biology of the Gene (7th edition), Pearson, p. 147-191
Yamaguchi, N., Nasu, M., 1997. Flow cytometric analysis of bacterial respiratory and enzymatic activity in the natural aquatic environment. J. Appl. Microbiol. 83, 43–52.
Zilliges, Y., Kehr, J.C., Meissner, S., Ishida, K., Mikkat, S., Hagemann, M., Kaplan, A., Börner, T., Dittmann, E., 2011. The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of Microcystis under oxidative stress conditions. PLoS One 6.
Zubkov, M.V., Fuchs, B.M., Tarran, G.A., 2003. High uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key to their dominance in oligotrophic ocean waters. Applied Environmental Microbiology 69, 1299–1304.
校內:2021-07-01公開