| 研究生: |
林晏正 Lin, Yan-Jeng |
|---|---|
| 論文名稱: |
具學習性之模糊專家系統於
權證發行商避險策略的應用 |
| 指導教授: |
陳梁軒
Chen, Liang-Shiuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 隱含波動率 、模糊專家系統 、認購權證 |
| 外文關鍵詞: | call warrant, implied volatility, fuzzy expert system |
| 相關次數: | 點閱:132 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著台灣認購權證市場逐漸擴大,權證發行券商的避險行為,也越來越受到重視,但過去券商因金融商品未臻完備,往往只能對賣出認購權證的資產,進行一階資產避險的動作,即僅僅只能達到Delta風險中立,而對於其他風險,如二階風險的Gamma風險及Vega風險,因需買賣同一標的物的認購權證來達到風險中立的目標,故執行上有相當大的困難,也因此,在實務上往往沒有辦法有效的規避Gamma風險及Vega風險,達到完全風險中立的目標。而為減少此類風險,券商往往也只能夠給予避險交易員一自行判斷的避險區間,由交易員的經驗來判斷是否進行超額與不足額避險,藉以降低Delta風險外其他風險的影響。但此法卻因為並無一明確的交易策略,且決策過程過於主觀,也因此讓券商暴露了更多的風險。本研究將嘗試利用現有的避險標的﹙即標的物股票﹚,進行降低Gamma風險及Vega風險的目標,並建立一系統化的模式,以降低人為主觀操作的錯誤。本研究利用具學習性之模糊專家系統,作為本研究的發展核心,除了和過去實務上常用的日間斷避險法與吳秉寰﹙1999﹚所建議的4%避險帶避險法作一比較外,並將對本研究的系統參數加以探討,實証結果發現,在本研究的研究樣本與所選擇的參數之中,模糊專家系統避險法確實較前述兩種避險法為佳,同時,建議在資料庫參數的選擇上選擇database=10將會有最佳的績效。
none
中文部分
陳威光﹙2002﹚,選擇權理論、實務與應用,台北市,智勝文化。
吳秉寰﹙1999﹚,「認購權證最適避險策略之研究」,國立政治大學碩士論文。
周恆志、涂登才、盧陽正﹙2001﹚ 「台灣股票認購權證避險之實證研究──最適VaR 避險法與間斷性Delta 避險法」,風險管理學報 , 第三卷 , pp.85-104。
陳松男﹙1999﹚ 「在間斷性避險及交易成本下的選擇權評價模型:以實務觀點修正理論」,風險管理學報 , 第一卷 , pp.43-54。
英文部分
Benet, B.A. ﹙1992﹚, “ Hedge Period Length and Ex-Ante Futures Hedging Effectiveness: The Case of Foreign-Exchanggge Risk Cross Hedges , ” Journal of Futures Markets , vol.12 , pp.163-175.
Black, F. and M. Scholes ﹙1973﹚, “ The Pricing of Options and CorporateLiabilities , ” Journal of Political Economy , vol.18 , pp. 637-659.
Bollerslev, T. ﹙1986﹚, “ Generalised Autoregressive Conditional Heteroscedasticity , ” Journal of Econometrics , vol.31 , pp. 307-327.
Boyle, P. P. and E. Emmanuel (1980), “ Discretely Adjusted Option Hedges , ” Journal of Financial Economics , vol.8 , pp. 259-282.
Boyle, P. P. and T. Vorst (1992), “ Option Replication in Discrete Time with Transaction Costs , ” The Journal of Finance , vol.47 , pp. 271-293.
Burkhardt, D. G. and P. P. Bonissone ﹙1992﹚, “ Automated Fuzzy Knowledge Base Generation and Tuning , ” Proc. of the First IEEE Fuzzy Systems Conference , pp. 179-188
Copeland, M. M. and T. E. Copeland ﹙1999﹚, “ Market Timing: Style and Size Rotation Using the VIX , ” Financial Analysts journal , pp. 73-87.
Etzioni, S. E. ﹙1986﹚ , “ Rebalance Disciplines for Portfolio Insurance , ” Journal of Portfolio Manageme , pp. 59-62
Galai, D. (1983), “ The Components of the Return from Hedging Options against Stocks , ” Journal of Business , vol.56 , pp. 45-54.
Garman, M. B. and M. J. Klass ﹙1981﹚, “ On the Estimation of Security Price Volatility from Historical Data , ” Journal of Business , vol.53 , pp. 67-78.
Glover, S. I. ﹙1996﹚, “ Solving Dilution Problems , ” Business Lawyer , vol.51 , pp.1241-1302.
Green, T. C. and S. Figlewski (1999), “ Market Risk and Model Risk for a Financial Institution Writing Options , ” The Journal of Finance , vol.54 , pp. 1465-1499.
Heston, C. ﹙1986﹚ , “ How Options Traders Bet on Volatility, Not Price , ” Futures , pp. 64-65
Hong , T. P. and C.Y. Lee ﹙1996﹚, “ Induction of Fuzzy Rules and Membership Functions from Traning Examples , ” Fuzzy set and systems , vol. 84 , pp. 33-47
Hong, T. P. and J.B. Chen ﹙1999﹚, “ Finding Relevant Attributes and Membership Functions , ” Fuzzy set and systems , vol. 103 , pp. 389- 404
Hong, T. P. and S.L. Wang ﹙2000﹚, “ Determining Appropriate Membership Function to Simplify Fuzzy Induction , ” Intelligent Data Analysis , vol.4 , pp.51-66
Huang, Y. C. and S. C. Chen ﹙2002﹚, “ Warrants Pricing:Stochastic Volatility vs. Black–Scholes , ” Pacific-Basin Finance , vol.10 , pp. 393-409
Lauterbach, B. and P. Schultz ﹙1990﹚, “ Pricing Warrants: An Empirical Study of the Black-Scholes Model and Its Alternatives , ” Journal of Finance , vol.45 , pp. 1181-1209.
Lee, C. C. ﹙1990﹚ , “ Fuzzy Logic in Control System: Fuzzy Logic Controller – Part Ⅰ and Part Ⅱ , ” IEEE Trans. Systems Man Cybernet , vol.20 , pp.404-435
Leland, H. E. ﹙1985﹚, “ Option Pricing and Replication with Transaction Costs , ” Journal of Finance , vol.40, pp. 1281-1301.
Martellini, L. and P. Priaulet ﹙2002﹚, “ Competing Methods for Option Hedging in the Presence of Transaction Costs , ” Journal Of Derivatives , pp. 26-38
Mohamed , B. ﹙1994﹚, “ Simulation of Transaction Cost and Optimal Rehedging , ” Applied Mathematical Finance, vol.1 , pp. 49-62.
Nawrocki, D. N. (1999) , “ A Brief History of Downside Risk Measures , ”Journal of Investing , vol.8 , pp.9-25.
Nomura, H. , I. Hayashi and N. Wakami ﹙1992﹚, “ A Learning Method of Fuzzy Inference Rule by Descent Method , ” Proc. of the First IEEE Fuzzy Systems Conference , pp. 203-210
Parkinson, M. ﹙1980﹚, “ The Extreme Value Method for Estimating the Variance of the Rate of Return , ” Journal of Business , vol.53 , pp. 61-65.
Pong, S. Y. , M. B. Shackleton , S. J. Taylor and X. Xu ﹙2004﹚, “ Forecasting Currency Volatility: A Comparison of Implied Volatilities and AR(FI)MA Models , ” Journal of Banking and Finance , pp. 2541-2563
Sears, S. M. ﹙1998﹚, “ Equity Options Are Used to Hedge Portfolios As Defensive Index Options Are Too Expensive , ” Wall Street Journal ﹙Eastern Edition ﹚ , pp. C13
Tan, K. ﹙2003﹚, “ The Striking Price : Payout Options , ” Barron's , vol.83 , p.MW14
Toft, K. B. (1996), “ On the Mean-Variance Tradeoff in Option Replication with Transactions Costs , ” Journal of Financial and Quantitative Analysis , vol.31 , pp.232-263.
Wang, L. X. and J. M. Mendel ﹙1992﹚ , “ Generating Fuzzy Rules by Learning from Examples , ” IEEE Trans. Systems Man Cybernet , vol.13 , pp. 1414-1427
Whalley, E. and P. Wilmott ﹙1993﹚, “ Counting the Costs , ” Risk , pp.56-66.