| 研究生: |
許紘東 Hsu, Hung-Tung |
|---|---|
| 論文名稱: |
低塑性粉土體積應變特性研究 A Study on Volumetric Strain Behavior of Low Plasticity Silty Sand |
| 指導教授: |
陳景文
Chen, Jing-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 266 |
| 中文關鍵詞: | 低塑性粉土 、擾動效應 、液化後體積應變特性 |
| 外文關鍵詞: | Low-plasticity silt, Effects of sample disturbance, Volumetric strain after post-liquefaction |
| 相關次數: | 點閱:238 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來國內外重大地震使許多地區發生土壤液化,而其所導致之地表沉陷亦引發許多二次災害,研究發現低塑性粉土含量較高區域之液化潛能是被低估的,因此探討低塑性粉土之動態行為乃必然趨勢。過去由於低塑性粉土層之取樣率低,研究難以發展,故本研究利用新式Gel Push取樣器取得未擾動原狀土樣,進行動態試驗。藉由一系列不同細粒料含量與孔隙比大小之重模試體,以及未擾動原狀與同條件之重模試體,探討其對含有低塑性粉土試體之動態強度與液化後體積應變之影響。
本研究結果顯示,在動態強度方面,隨著孔隙比減低,反覆剪應力比會提升;重模試體之反覆剪應力會低於原狀試體,可知低塑性粉土之動態強度會因擾動而降低。在液化後體積應變方面,隨著孔隙比減低,體積應變量會降低;而隨著細粒料含量增加,體積應變量會提升;重模試體之體積應變量高於原狀試體。藉由對低塑性粉土之動態強度與液化後體積應變之行為特性研究,以期能用於評估液化潛能與液化所造成之壓密沉陷量,作為工程設計上參考依據。
Many severe natural disasters resulted from soil liquefaction during earthquakes in the world. The ground subsidence due to the soil liquefaction was also resulted in secondary damage of the structures. In recent years, soil liquefaction induced from the earthquakes was found in many strata with low-plastic silts around the world. Therefore the study of the dynamic behavior of low-plasticity silt of is necessary. The major difficulty during investigating the low-plasticity silt was unable to obtain the soil specimen which can represent the field conditions; especially the low rate of sampling. In this study the Gel Push sampler was developed, with which the undisturbed low-plastic soil specimens can be obtained.
The purpose of this study was to investigate the dynamic strength of the low-plasticity silt and the behavior of volumetric strain after liquefaction. The effect of fines content and void ratio on the dynamic behavior of the low-plasticity silt is also studied; the influence of the sample disturbance is investigated as well.
The results indicated that cyclic shear ratio will increase as the void ratio decreased on the behavior of dynamic strength. The cyclic shear ratio of a remolded sample is lower than that of an undisturbed one. Therefore the dynamic strength of low-plastic silt decreases with reducing the degree of disturbance. On the behavior of volume change, it decreases with decreasing of the void ratio and the fines content. The volume change after liquefying of a remolded sample is much noticeable than that of an undisturbed one. With low-plasticity silt on the behavior of dynamic strength and volume strain behavior of research to be used for evaluation of liquefaction and liquefaction caused by compaction settlement amount, as a reference for engineering design.
1. 中華人民共和國國家標準,「建築抗震設計規範」,中國建築工業 出版社,北京(1989)
2. 吳偉特,「台灣地區砂性土壤液化潛能之初步研究」,土木水利,第六卷,第二期 ,第39-70頁(1979)。
3. 吳偉特、楊騰芳,「細粒料含量在不同程度影響因素中對台灣地區沉積性砂土液化特性之研究」,土木水利,第十四卷,第三期,第59-74頁(1987)。
4. 吳紹華,「砂土細粒料含量對動力三軸試驗超額孔隙水壓量測之影響」,碩士論文,國立台灣大學土木工程系研究所,臺北 (2006)
5. 李維峰,「土壤液化防治之研究與發展趨勢」,地工技術,第103期,第89-91頁,3月(2005)。
6. 李維峰,石原研而,陳俊吉,陳景文,張浼珣,「台灣低塑性粉土工程性質研究」,地工技術,第133期,第7-18頁,(2012)。
7. 林智偉,「無塑性細料對砂質土壤液化阻抗之研究」,碩士論文,國立成功大學土木工程系研究所,臺南(2006)。
8. 林志慶,「霧峰地區土壤液化引致地表沉陷量之研究」,碩士論文,國立中興大學土木工程系研究所, 臺中(2006)。
9. 范恩碩,「以九二一集集地震案例探討細粒料對液化前能評估之影響」,碩士論文,國立成功大學土木工程系研究所,臺南(2004)
10. 施慶煌,「低塑性粉質砂土之原狀與重模試體動態性質之探討」,碩士論文,國立成功大學土木工程系研究所,臺南(2009)。
11. 洪聖淵,「低塑性粉土液化後體積應變行為研究」,碩士論文,國立成功大學土木工程系研究所,臺南(2012)。
12. 孫家雯,「砂土細料界定對液化強度之影響」,碩士論文,國立台灣大學土木工程研究所,臺北(2003)。
13. 高茂森,「土壤動三軸試驗條件對液化潛能分析之影響」,碩士論文,國立成功大學土木工程系研究所, 臺南(2004)。
14. 張浼珣,「初步液化潛能分區法之研究」,碩士論文,國立成功大學土木工程系研究所,臺南(2005)。
15. 張維哲,「土壤取樣方式對低塑性粉土質砂動態性質探討」,碩士論文,國立成功大學土木工程系研究所,臺南(2009)。
16. 許家豪,「不同粒徑細粒料對土壤液化阻抗影響之研究」,碩士論文,國立成功大學土木工程系研究所,臺南(2003)。
17. 陳名利,「以剪力模數評估砂土液化潛能之研究」,碩士論文,國立台灣工業技術學院工程技術研究所營建工程組,臺北(1990)。
18. 陳嘉裕,「細粒料含量對沙土浪化潛能之影響研究」,碩士論文,國立成功大學土木工程系研究所,臺南(1999)。
19. 陳界文,「細粒料特性對土壤抗液化強度之影響」,碩士論文,國立台灣大學土木工程系研究所,臺北(2001)。
20. 陳景文、李維峰、林伯融、陳俊吉、張維哲、洪聖淵,「土壤取樣方式對低塑性粉土質砂動態性質探討」,第十四屆大地工程學術研討會暨國科會土木工程學門成果發表會,論文摘要集第11頁,桃園(2011)。
21. 陳俊吉,「低塑性粉土工程性質探討」,博士論文,國立成功大學土木工程系研究所,臺南(2013)。
22. 陳景文、陳俊吉、李維峰、石原研而,「台灣低塑性粉土工程性質初探」,中國土木水利工程學刊,2013。(EI) (Accept)
23. 游家豪,「低塑性細料對粉質砂土動態性質之影響」,碩士論文,國立成功大學土木工程系研究所,臺南(2007)。
24. 褚炳麟、張益銘、陳冠閔、徐松圻、張錦銘,「921地震霧峰、太平地區液化即下陷調查分析」,地工技術,第77期,第19-28頁(2000)
25. 廖元憶,「台灣西南沿海高細粒料含量砂土的探討」,碩士論文,國立成功大學土木工程系研究所,臺南(2005)。
26. Chaney, R. C., “Saturation effects on the cyclic strength of sands”, Earthquake Engineering and Soil Dynamics, ASCE, Vol, 1, pp. 342-358(1978).
27. Chang, N.Y., Yeh, S.T. and Kaufman, L. P., “Liquefaction potential of clean and silty sands”, Proceedings of the Third International Earthquake Microzonation Conference, Vol. 2, pp. 1017-1032(1982).
28. Cubrinovski, M. and Ishihara, K., “Maximum and Minimum Void Ratio Characteristics of Sands”, Soils and Foundations, Vol. 42, No. 6, pp.65-78(2002).
29. Cubrinovski, M., Rees, S. and Bowman, E., “Effects of non-plastic fines on liquefaction resistance of sandy soils”, M. Garevski and A. Ansal (Ed.), Earthquake Engineering in Europe. Geotechnical, Geological, and Earthquake Engineering 17. pp. 125-144(2010).
30. Chen, J. w., Lee, W. F., and Chen, C. C., “Liquefaction Resistance and Internal Erosion Potential of Non-Plastic Silty Sand.” The Japan-Korea-Taiwan Joint Seminar on Earthquake Engineering for Building Structures. Japan. (2012).
31. Das, D. M., “Principles of Geotechnical Engineering”(1985).
32. Della, N., Arab, A. and Belkhatir, M., “Influence of Specimen -Reconstituting Method on the Undrained Response of Loose Granular Soil under Static Loading”, Acta Mechanica Sinica, Vol. 27, No. 5, pp. 796-802(2011).
33. Erten, D. and Maher, M. H., “Cyclic Undrain Behavior of Silty Sand”, Soil Dynamics and Earthquake Engineering, Vol. 14, pp. 115-123(1995).
34. Guo,T.and Prakash, S., “Liquefaction Silt-Clay Mixtures”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 8(1999).
35. Hazen, A.,“Hydraulic Fill Dams”, ASCE, Vol. 83, pp. 1713-1745(1920).
36. Høeg, K., Dyvik, R. and Sandbaekken, G., “Strength of Undisturbed Versus Reconstituted Silt and Silty Sand Specimens”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 7, pp. 606-617 (2000).
37. Holtz, R. D., Kovacs, W. D. and Sheahan, T. C., “An Introduction to Geotechnical Engineering”(1981)
38. Ishibashi, I. M., Sherlif, M. A. and Cheng, W. L., “The Effects of Soil Parameters on Pore Pressure Rise and Liquefaction Prediction,”Soils and Foundations, JSSMEF, Vol. 22, No. 1, pp. 37-48(1982).
39. Ishihara, K., “Stability of Natural Deposits during Earthquakes”, Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, pp. 321-376(1985).
40. Ishihara, K., “Soil Behavior in Earthquake Geotechnics ” , Clarendon, Oxfor and New York(1996).
41. Ishihara, K., “Geotechnical Aspects of the 1995 Kobe Earthquake”, Proceedings 14th International Conference on Soil Mechanics and Foundation Engineering, Terzaghi Oration, Hamburg(1997).
42. Ishihara, K. and Yoshimi, M., “Evaluation of Settlement in Sand Deposits Following Shear Loading”, Soils and Foundations, Vol. 32, No. 1, pp.178-188(1992).
43. Ishihara, K., Araki, K. and Bradley, B., “Liquefaction in Toyoko Bay Area in the 2011 Great East Japan Earthquake”, International Conference on Earthquake Geotechnical Engineering from Case History to Practice, Aswan, Egypt(2012).
44. Kramer, S. L., “Geotechnical Earthquake Engineering”, Prentice Hall, New Jersey(1996).
45. Kuerbis, R., Nequssey, D. and Vaid, Y. P., “Effect of Gradation and Fines Content on the Undrained Response of Sand”, Geotechnical Special Publication, ASCE, No. 21, pp. 330-345(1988).
46. Lee, K. L. and Albaisa, A., “Earthquake Induced Settlements in Saturated Soil”, Vibration Effects of Earthquake on Soil and Foundations, ASTM, STP 450, pp. 71-96(1969).
47. Marcuson, W. F., “Definition of Term Related to Liquefaction”, Journal of Geotechnical Engineering Division, ASCE, Vol. 103, No. GT6, pp.565-588(1978).
48. Monkul, M. M. and Yamamuro , J. A., “Influence of Silt Size and Content on Liquefaction Behavior of Sands”, Canadian Geotechnical Journal, Vol. 48, No. 6, pp. 931-942(2011).
49. Nagase, H. and Ishihara, K., “Liquefaction-Induced Compaction and Settlement of Sand During Earthquakes”, Soils and Foundations, Vol. 28, No. 1, pp. 65-76(1988).
50. Peacock, W. H. and Seed, H. B., “Sand Liquefaction Under Cyclic Loading Simple Shear Conditions“, Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, Vol. 94, SM3, pp. 689-708(1968).
51. Polito, C. P. and Martin, J. R., “Effects of Nonplastic Fines on the Liquefaction Resistance of Sands”, Journal of the Geotechnical Engineering, Vol. 127, No. 5, pp. 408-415(2001)
52. Seed, H. B., “Evaluation of soil liquefaction effects on level ground during earthquakes”, Liquefaction Problems in Geotechnical Engineering, pp.1-104(1976).
53. Seed, H. B. and Lee, K. L., “Liquefaction of Saturated Sands During Cyclic Loading”, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 92, No. SM6, pp. 105-134(1966).
54. Seed, H.B., Tokimatsu, K., Harder, L.F. and Chung, R.M., “Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations”, Journal of Geotechnical Engineering, 4SCE, Vol.111, NO. 12, pp. 1425-1445(1985) .
55. Seed, R. B. and Harder, L. F., “SPT-Based Analysis of Cyclic Pore Pressure Generation and Undrained Residual Strength”, in J. M. Duncan ed., Proceedings, H. Bolton Seed Memorial Symposium, University of California, Berkeley, California, Vol. 2, pp. 351-376(1990).
56. Tsukamoto, Y., Ishihara, K. and Sawada, S., “Settlement of silty sand deposits following liquefaction during earthquakes”, Soils and Foundations, Vol. 44, No. 5, pp. 135-148(2004).
57. Wong, R. T., Seed, H. B. and Chan, C. K., “Cyclic Loading Liquefaction of Gravelly Soils”, Journal of the Soil Mechanics and Foundation Enginnering Division, ASCE, Vol. 101, No. GT6, pp. 571-583(1975)
58. Xenaki, V. C. and Athanasopoulos, G. A., “Liquefaction Resistance of Sand-Silt Mixtures:an Experimental Investigation of the Effect of Fines”, Soil Dynamics and Earthquake Engineering, Vol. 23, No. 3, pp. 183-194(2003).
59. Yamamuro, J.A., AND Kelly, M., “Monotonic and Cyclic Liquefaction of very Loose Sands with High Silt Content,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, pp. 314-323(2001).
60. Yoshimi, Y. and Ohoka, H., “Influence of Degree of Shear Stress Reversal on the Liquefaction Potential of Saturated Sand”, Soils and Foundations, JSSMFE, Vol. 15, No. 3, pp. 27-40(1975).
61. Yoshimi, Y., Tokimatsu, K. and Ohara, J., “In Situ Liquefaction Resistance of Clean Sands over a Wide Density Range”, Geotechnique 44, No. 3, pp.479-494(1994).