| 研究生: |
許家齊 Hsu, Chia-Chi |
|---|---|
| 論文名稱: |
以基因體學探討蝴蝶蘭B群花器決定基因啟動子及花色調控轉錄因子之研究 Exploiting genomics for the promoters of B-class floral organ identity genes and the transcription factors regulating flower color in Phalaenopsis orchids |
| 指導教授: |
陳虹樺
Chen, Hong-Hwa |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2014 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 153 |
| 中文關鍵詞: | 花色 、花形 、蝴蝶蘭 、轉位子 |
| 外文關鍵詞: | flower color, flower morphology, Phalaenopsis, transposable elements |
| 相關次數: | 點閱:142 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蝴蝶蘭以其持久、獨特而美麗的花朵外形及多樣化的顏色而成為世界主要的暢銷花卉作物,新的商業品種的育種更讓台灣成為世界上主要的蝴蝶蘭出口國家。蝴蝶蘭的分子基因研究更可以加速蘭花品質的改善。本論文的研究內容主要分成兩大部分:第一部份是探討蝴蝶蘭的基因體組成結構與long terminal repeat 反轉位子 (LTR-retrotransposons) 對蝴蝶蘭基因體大小的影響;第二部分是探討蝴蝶蘭花形和花色的調控機制。在第一部分,以蝴蝶蘭的細菌人工染色體末端序列 (bacterial artificial chromosome end sequences, BESs) 分析其中的基因、重複序列及微衛星序列組成。這些研究將可以幫助我們瞭解蝴蝶蘭與其他植物基因體組成的相似和差異。進一步,利用BESs和部分解序的蝴蝶蘭基因體序列 (partial Phalaenopsis genome sequences),分析其中LTR-反轉位子在蝴蝶蘭基因體的數量,並分析LTR-反轉位子對於蘭花基因體大小的影響。在第二部分,選殖五個B群的MADS基因 (PeMADS2~6) 的啟動子,以探討調控這五個基因的機制。PeMADS2~6在不同的花器表現並調控蝴蝶蘭的花朵形態發育。此外,分析啟動子上的DNA甲基化與染色質修飾(chromatin modification) 狀態。確認B群基因以啟動子序列及組蛋白乙醯基化修飾 (histone acetylation)作用,調控B群基因在不同花器中有不同的表現模式。在蝴蝶蘭花色色素圖案 (pigmentation patterning) 部分,以全基因體方式鑑定出MYB轉錄因子,發現其中三個MYB轉錄因子 (PeMYB2, PeMYB11, and PeMYB12) 不但在不同時間與空間參與花青素生合成,且會調控花朵不同的花色色素圖案。其中PeMYB2調控花萼和花瓣上全面粉紅色(full-red),PeMYB11調控花萼、花瓣與唇辦上的紅色班點(red-spot),PeMYB12調控花萼和花瓣上沿著維管束分佈的紅色線條(venation pattern)與唇辦上的紅色。這些結果顯示蝴蝶蘭具有複雜的MYB轉錄因子進行花青素生合成與花色色素圖案的調控。此外,不同的蝴蝶蘭商業品種含不同比例的PeMYB2、PeMYB11及 PeMYB12的基因表現,造成蝴蝶蘭具有非常多樣的花色色素圖案。綜合以上,本論文內容促使我們更瞭解蝴蝶蘭的基因體組成,並能以研究基因體的觀點探討蝴蝶蘭在花形與花色上獨特而複雜的調控機制。這些研究增進我們對於蘭花特殊花形與多樣花色的認識,進而提升蘭花在花卉產業上與眾不同的價值性。
Phalaenopsis orchids have become very popular for their long-lasting flowers with elegant floral morphology and various flower colors. Development of new cultivars is economically important for floricultural industry worldwide. This thesis contains two parts: (1) analysis of the genome structure and composition, and (2) study of the regulatory mechanism for the promoters of B-class floral organ identity genes and the transcription factors regulating flower color in Phalaenopsis. For the first part, pair-end sequences from 2,920 bacterial artificial chromosome (BAC) clones of P. equestris were analyzed for the compositions of protein-coding regions, repeat sequences, and microsatellites in the P. equestris genome. The LTR-retrotransposons were identified from the BAC end sequences (BESs) and partial genome sequences, and examined for their retrotransposition/recombination events and effects on Phalaenopsis genome sizes. Their copy numbers were assessed in the genome sequences of four Phalaenopsis species with either small or large chromosomes. For the second part of studying the regulation of orchid morphogenesis, the promoter sequences of five B-class MADS-box genes (PeMADS2~6) were identified and analyzed. These included four APETALA3 (AP3)-like PeMADS2~5 and one PISTILLATA (PI)-like PeMADS6, displaying distinct expression profiles in various floral organs and specifying the spectacular flower morphology in orchids. Further studies on DNA methylation and histone modification status of PeMADS2~6 were performed. The regulation via the upstream sequences as well as increased histone acetylation levels may involve in the distinct expression profiles of the AP3-like genes for Phalaenopsis floral morphogenesis. To investigate the floral pigmentation patterning, genome-wide identification of regulatory genes involved in the flower color and anthocyanin biosynthesis pathway in Phalaenopsis, such as MYBs was performed. Three R2R3-MYB transcription factors, PeMYB2, PeMYB11, and PeMYB12, were characterized for their roles in regulating three distinct floral pigmentation patterns, full-red, red-spot, and venation patterns, respectively, in one single flower of Phalaenopsis. In addition, various ratios of these three PeMYBs were concomitant with distinct floral pigmentation patterns in six commercial cultivars. These results unravel the complicated regulation of anthocyanin pigmentation patterning in Phalaenopsis which leads to the highly abundant color patterns in orchid flowers. All these results together improve our knowledge on the genome composition and the regulation of floral morphogenesis and pigmentation patterning in Phalaenopsis orchids through genomics approach.
Chapter 1 references
Albert NW, Lewis DH, Zhang H, Schwinn KE, Jameson PE, Davies KM. Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant J 65:771-784, 2011.
Alcock J. Enthusiasm for Orchids: Sex and Deception in Plant Evolution. New York: Oxford University Press, 2005.
Bennetzen JL. Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621-627, 2005.
Bennetzen JL, Ma J, Devos KM. Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127-132, 2005.
Bennett MD, Leitch IJ. Plant DNA C-values database (release 6.0, Dec. 2012), http://www.kew.org/cvalues/, 2012.
Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P, Reforgiato-Recupero G, Martin C. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24:1242-1255, 2012.
Cavagnaro PF, Chung SM, Szklarczyk M, Grzebelus D, Senalik D, Atkins AE, Simon PW. Characterization of a deep-coverage carrot (Daucus carota L.) BAC library and initial analysis of BAC-end sequences. Mol Genet Genomics 281:273-288, 2009.
Chaparro C, Guyot R, Zuccolo A, Piegu B, Panaud O. RetrOryza: a database of the rice LTR-retrotransposons. Nucleic Acids Res 35:D66-70, 2007.
Chen FC, Chen WH. Chapter 4. Somaclonal variation in orchids. In: Orchid Biotechnology. Eds: Chen, W.H., and Chen, H.H. World Scientific Publishing Co. Pte. Ltd., Singapore. ISBN: 978-981-270-619-5, 2007.
Chen YY, Lee PF, Hsiao YY, Wu WL, Pan ZJ, Lee YI, Liu KW, Chen LJ, Liu ZJ, Tsai WC. C- and D-class MADS-box genes from Phalaenopsis equestris (Orchidaceae) display functions in gynostemium and ovule development. Plant Cell Physiol 53:1053-1067, 2012.
Cheung F, Town CD. A BAC end view of the Musa acuminata genome. BMC Plant Biol 7:29, 2007.
Chiou CY, Yeh KW. Differential expression of MYB gene (OgMYB1) determines color patterning in floral tissue of Oncidium Gower Ramsey. Plant Mol Biol 66:379-388, 2008.
Clegg MT, Dnrbin ML. Tracing floral adaptations from ecology to molecules. Nature Rev 4:206-215, 2003.
Cozzolino S, Widmer A. Orchid diversity: an evolutionary consequence of deception. Trends Ecol Evol 20:487-494, 2005.
Delforge P. Orchids of Europe, North Africa and Middle East. Portland, OR: Timber Press, 2006.
Dereeper A, Guyot R, Tranchant-Dubreuil C, Anthony F, Argout X, de Bellis F, Combes MC, Gavory F, de Kochko A, Kudrna D, Leroy T, Poulain J, Rondeau M, Song X, Wing R, Lashermes P. BAC-end sequences analysis provides first insights into coffee (Coffea canephora P.) genome composition and evolution. Plant Mol Biol 83:177-189, 2013.
Dressler RL. Phylogeny and classification of the orchid family. University of Cambridge: 320 p, 1993.
Dressler RL. How many orchid species? Selbyana 26:155-158, 2005.
Du J, Grant D, Tian Z, Nelson RT, Zhu L, Shoemaker RC, Ma J. SoyTEdb: a comprehensive database of transposable elements in the soybean genome. BMC Genomics 11:113, 2010.
Endler JA. Disruptive and cryptic coloration. Proc R Soc B 273:2425-2426, 2006.
Ferreira de Carvalho J, Chelaifa H, Boutte J, Poulain J, Couloux A, Wincker P, Bellec A, Fourment J, Bergès H, Salmon A, Ainouche M. Exploring the genome of the salt-marsh Spartina maritima (Poaceae, Chloridoideae) through BAC end sequence analysis. Plant Mol Biol 83:591-606, 2014.
Feschotte C, Jiang N, Wessler S. Plant transposable elements: where genetics meets genomics. Nature Rev Genet 3:329-341, 2002.
Finnegan DJ. Eukaryotic transposable elements and genome evolution. Trends Genet 5:103-107, 1989.
Galizia CG, Kunze J, Gumbert A, Borg-Karlson AK, Sachse S, Markl C, Menzel R. Relationship of visual and olfactory signal parameters in a food-deceptive flower. Behav Ecol 16:159-168, 2005.
Gaskett AC, Herberstein ME. Colour mimicry and sexual deception by Tongue orchids (Cryptostylis). Naturwissenschaften 97:97-102, 2010.
Gogvadze E, Buzdin A. Retroelements and their impact on genome evolution and functioning. Cell Mol Life Sci 66:3727-3742, 2009.
Gomez-Mena C, de Folter S, Costa MM, Angenent GC, Sablowski R. Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 132:429-438, 2005.
Gramzow L, Theissen G. A hitchhiker's guide to the MADS world of plants. Genome Biol 11:214, 2010.
Gregory TR. Macroevolution and the genome. In: The Evolution of the Genome (T. R. Gregory, ed.), pp. 680-729. Elsevier, San Diego, 2005.
Griesbach RJ, Beck RM, Hammond J. Gene expression in the star mutation of Petunia x hybrida Vilm. J Am Soc Hortic Sci 132:680-690, 2007.
Grotewold E. The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761-780, 2006.
Han Y, Korban SS. An overview of the apple genome through BAC end sequence analysis. Plant Mol Biol 67:581-588, 2008.
Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16:1252-1261, 2006.
Hernandez JM, Heine GF, Irani NG, Feller A, Kim MG, Matulnik T, Chandler VL, Grotewold E. Different mechanisms participate in the R-dependent activity of the R2R3 MYB transcription factor C1. J Biol Chem 279:48205-48213, 2004.
Heuschen B, Gumbert A, Lunau K. A generalised mimicry system involving angiosperm flower colour, pollen and bumblebees’ innate colour preferences. Plant Syste Evol 252:121-137, 2005.
Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62:2465-2483, 2011.
Hill TA, Day CD, Zondlo SC, Thackeray AG, Irish VF. Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development 125:1711-1721, 1998.
Honma T, Goto K. The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals. Development 127:2021-2030, 2000.
Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Hsu YC, Chuang YC, Shih HH, Chen WH, Tsai WC, Chen HH. Research on orchid biology and biotechnology. Plant Cell Physiol 52:1467-1486, 2011.
Iida S, Hoshino A, Johzuka-Hisatomi Y, Habu Y, Inagaki Y. Floricultural traits and transposable elements in the Japanese and common morning glories. Ann N Y Acad Sci 870:265-274, 1999.
Iida S, Morita Y, Choi JD, Park KI, Hoshino A. Genetics and epigenetics in flower pigmentation associated with transposable elements in morning glories. Adv Biophys 38:141-159, 2004.
Inagaki Y, Hisatomi Y, Suzuki T, Kasahara K, lida S. lsolation of a Suppressor-mutator/Enhancer-like transposable element, Tpn1, from Japanese bearing variegated flowers. Plant Cell 6:375-383, 1994.
Irish VF, Litt A. Flower development and evolution: gene duplication, diversification and redeployment. Curr Opin Genet Dev 15:454-460, 2005.
Itoh Y, Higeta D, Suzuki A, Yoshida H, Ozeki Y. Excision of transposable elements from the chalcone isomerase and dihydroflavonol 4-reductase genes may contribute to the variegation of the yellow-flowered carnation (Dianthus caryophyllus). Plant Cell Physiol 43:578-585, 2002.
Jersáková J, Johnson SD, Kindlmann P. Mechanisms and evolution of deceptive pollination in orchids. Biol Rev 81:219-235, 2006.
Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR. Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569-573, 2004.
Kapitonov VV, Jurka J. Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc Natl Acad Sci USA 100:6569-6574, 2003.
Kashkush K, Feldman M, Levy AA. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102-106, 2003.
Kazazian Jr HH. Mobile elements: drivers of genome evolution. Science 303:1626-1632, 2004.
Kellogg EA. Evolution of developmental traits. Curr Opin Plant Biol 7:92-98, 2004.
Kidwell MG, Lisch D. Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci USA 9:7704-7711, 1997.
Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8:464-478, 1998.
Koes R, Verweij W, Quattrocchio F. Flavonoids: a colourful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236-242, 2005.
Koseki M, Goto K, Masuta C, Kanazawa A. The star-type color pattern in Petunia hybrida ‘Red star’ flowers is induced by sequencespecific degradation of chalcone synthase RNA. Plant Cell Physiol 46:1879-1883, 2005.
Kumar A, Bennetzen JL. Plant retrotransposons. Annu Rev Genet 33:479-532, 1999.
Kunze R, Weil CF. "Mobile DNA II," ed. by N.L. Craig, R. Craigic, M. Gellert, and A.M. Lambowiz, AMS Press, Washington, DC, p. 565, 2002.
Lamb RS, Hill TA, Tan QK, Irish VF. Regulation of APETALA3 floral homeotic gene expression by meristem identity genes. Development 129:2079-2086, 2002.
Litt A, Kramer EM. The ABC model and the diversification of floral organ identity. Semin Cell Dev Biol 21:129-137, 2010.
Lunau K, Fieselmann G, Heuschen B, van de Loo A. Visual targeting of components of floral colour patterns in flower-naive bumblebees (Bombus terrestris; Apidae). Naturwissenschaften 93:325-328, 2006.
Ma H, Pooler M, Griesbach R. Anthocyanin regulatory/structural gene expression in Phalaenopsis. J Am Soc Hortic Sci 134:88-96, 2009.
Medel R, Botto-Mahan C, Kalin-Arroyo M. Pollinator-mediated selection on the nectar guide phenotype in the Andean monkey flower, Mimulus luteus. Ecology 84:1721-1732, 2003.
Meyers BC, Tingey SV, Morgante M. Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11:1660-1676, 2001.
Morgante M. Plant genome organisation and diversity: the year of the junk! Curr Opin Biotechnol 17:168-173, 2005.
Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A. Gene duplication and exon shuffling by Helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997-1002, 2005.
Nam J, dePamphilis CW, Ma H, Nei M. Antiquity and evolution of the MADS-box gene family controlling flower development in plants. Mol Biol Evol 20:1435-1447, 2003.
Nordborg M, Walbot V. Estimating allelic diversity generated by excision of different transposon types. Theor Appl Genet 90:771-775, 1995.
Ohri D. Climate and growth form: The consequences for genome size in plants. Plant Biol 7:449-458, 2005.
Otero JT, Flanagan NS. Orchid diversity - beyond deception. Trends Ecol Evol 21:64-65, 2006.
Pan ZJ, Cheng CC, Tsai WC, Chung MC, Chen WH, Hu JM, Chen HH. The duplicated B-class MADS-box genes display dualistic characters in orchid floral organ identity and growth. Plant Cell Physiol 52:1515-1531, 2011.
Pan ZJ, Chen YY, Du JS, Chen YY, Chung MC, Tsai WC, Wang CN, Chen HH. Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes. New Phytol 202:1024-1042, 2014.
Pang YZ, Peel GJ, Wright E, Wang ZY, Dixon RA. Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula. Plant Physiol 145:601-615, 2007.
Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200-203, 2000.
Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O. Doubling genome size without polyploidization: Dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262-1269, 2006.
Quattrocchio F, Wing JF, van der Woude K, Mol JN, Koes R. Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes. Plant J 13:475-488, 1998.
Quattrocchio F, Wing J, van der Woude K, Souer E, de Vetten N, Mol J, Koes R. Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. Plant Cell 11:1433-1444, 1999.
Rosenthal GG, Ryan MJ. Visual and acoustic communication in nonhuman animals: a comparison. J Biosci 25:285-290, 2000.
Rudall PJ, Bateman RM. Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots. Biol Rev Camb Philos Soc 77:403-441, 2002.
Saito R, Fukuta N, Ohmiya A, Itoh Y, Ozeki Y, Kuchitsu K, Nakayama M. Regulation of anthocyanin biosynthesis involved in the formation of marginal picotee petals in Petunia. Plant Sci 170:828-834, 2006.
Santos AA, Penha HA, Bellec A, Munhoz Cde F, Pedrosa-Harand A, Bergès H, Vieira ML. Begin at the beginning: A BAC-end view of the passion fruit (Passiflora) genome. BMC Genomics 15:816, 2014.
Schaefer HM, Schaefer V, Levey DJ. How plant-animal interactions signal new insights in communication. Trends Ecol Evol 19:577-584, 2004.
Schiestl FP, Peakall R, Mant J. Chemical communication in the sexually deceptive orchid genus Cryptostylis. Bot J Linn Soc 144:199-205, 2004.
Schiestl FP. On the success of a swindle: pollination by deception in orchids. Naturwissenschaften 92:255-264, 2005.
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, et al. The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112-1115, 2009.
Schwinn K, Venail J, Shang Y, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18:831-851, 2006.
Shang Y, Venail J, Mackay S, Bailey PC, Schwinn KE, Jameson PE, Martin CR, Davies KM. The molecular basis for venation patterning of pigmentation and its effect on pollinator attraction in flowers of Antirrhinum. New Phytol 189:602-615, 2011.
Shultz JL, Kazi S, Bashir R, Afzal JA, Lightfoot DA. The development of BAC-end sequence-based microsatellite markers and placement in the physical and genetic maps of soybean. Theor Appl Genet 114:1081-1090, 2007.
Soltis DE, Chanderbali AS, Kim S, Buzgo M, Soltis PS. The ABC model and its applicability to basal angiosperms. Ann Bot 100:155-163, 2007.
Stafford HA. Anthocyanins and betalains: evolution of the mutually exclusive pathways. Plant Sci 101:91-98, 1994.
Su CL, Chen WC, Lee AY, Chen CY, Chang YC, Chao YT, Shih MC. A modified ABCDE model of flowering in orchids based on gene expression profiling studies of the moth orchid Phalaenopsis aphrodite. PLoS One 8:e80462, 2013.
Sundstrom JF, Nakayama N, Glimelius K, Irish VF. Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis. Plant J 46:593-600, 2006.
Tautz D. Evolution of transcriptional regulation. Curr Opin Genet Dev 10:575-579, 2000.
The International Human Genome Sequencing Consortium (TIHGSC). Initial sequencing and analysis of the human genome. Nature 409:860-921, 2001.
Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Munster T, Winter KU, Saedler H. A short history of MADS-box genes in plants. Plant Mol Biol 42:115-149, 2000.
Theissen G, Saedler H. Floral quartets. Nature 409:469-471, 2001.
Tilly JJ, Allen DW, Jack T. The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development 125:1647-1657, 1998.
Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN. Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biol J Linn Soc 84:1-54, 2005.
Tsai WC, Kuoh CS, Chuang MH, Chen WH, Chen HH. Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol 45:831-844, 2004.
Tsai WC, Lee PF, Chen HI, Hsiao YY, Wei WJ, Pan ZJ, Chuang MH, Kuoh CS, Chen WH, Chen HH. PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol 46:1125-1139, 2005.
Tsai WC, Hsiao YY, Pan ZJ, Kuoh CS, Chen WH, Chen HH. The role of ethylene in orchid ovule development. Plant Sci 175:98-105, 2008.
Ushimaru A, Watanabe T, Nakata K. Colored floral organs influence pollinator behavior and pollen transfer in Commelina communis (Commelinaceae). Am J Bot 94:249-258, 2007.
Vitte C, Panaud O. LTR-retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet Genome Res 110:91-107, 2005.
Vitte C, Bennetzen JL. Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci USA 103:17638-17643, 2006.
Walbot V, Rudenko GN. "Mobile DNA II," ed. by N.L. Craig, R. Craigie, M. Gellert, and A.M. Lambowiz, AMS Press, Washington, DC, p. 533, 2002.
Wang SY, Lee PF, Lee YI, Hsiao YY, Chen YY, Pan ZJ, Liu ZJ, Tsai WC. Duplicated C-class MADS-box genes reveal distinct roles in gynostemium development in Cymbidium ensifolium (Orchidaceae). Plant Cell Physiol 52:563-577, 2011.
Waser NM, Price M. The effect of nectar guides on pollinator preference: experimental studies with a montane herb. Oecologia 67:121-126, 1985.
Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396-399, 2003.
Xie DY, Dixon RA. Proanthocyanidin biosynthesis e still more questions than answers? Phytochemistry 66:2127-2144, 2005.
Yamagishi M, Shimoyamada Y, Nakatsuka T, Masuda K. Two R2R3-MYB genes, homologs of Petunia AN2, regulate anthocyanin biosyntheses in flower tepals, tepal spots and leaves of asiatic hybrid lily. Plant Cell Physiol 51:463-474, 2010.
Yamagishi M, Toda S, Tasaki K. The novel allele of the LhMYB12 gene is involved in splatter-type spot formation on the flower tepals of Asiatic hybrid lilies (Lilium spp.). New Phytol 201:1009-1020, 2014.
Yang L, Bennetzen JL. Structure-based discovery and description of plant and animal Helitrons. Proc Natl Acad Sci USA 106:12832-12837, 2009.
Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130:4859-4869, 2003.
Chapter 2 references
Ammiraju JS, Luo M, Goicoechea JL, Wang W, Kudrna D, Mueller C, Talag J, Kim H, Sisneros NB, Blackmon B, Fang E, Tomkins JB, Brar D, MacKill D, McCouch S, Kurata N, Lambert G, Galbraith DW, Arumuganathan K, Rao K, Walling JG, Gill N, Yu Y, SanMiguel P, Soderlund C, Jackson S, Wing RA. The Oryza bacterial artificial chromosome library resource: construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza. Genome Res 16:140-147, 2006.
Atwood JT. The size of Orchidaceae and the systematic distribution of epiphytic orchids. Selbyana 9:16, 1986.
Capesius I, Nagl W. Molecular and cytological characteristics of nuclear DNA and chromatin for agniosperm systematics: DNA diversification in the evolution of four orchids. Plant Syst Evol 129:143-166, 1978.
Cavagnaro PF, Chung SM, Szklarczyk M, Grzebelus D, Senalik D, Atkins AE, Simon PW. Characterization of a deep-coverage carrot (Daucus carota L.) BAC library and initial analysis of BAC-end sequences. Mol Genet Genomics 281:273-288, 2009.
Chang CC, Lin HC, Lin IP, Chow TY, Chen HH, Chen WH, Cheng CH, Lin CY, Liu SM, Chaw SM. The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol 23:279-291, 2006.
Cheung F, Town CD. A BAC end view of the Musa acuminata genome. BMC Plant Biol 7:29, 2007.
Cozzolino S, Widmer A. Orchid diversity: an evolutionary consequence of deception? Trends Ecol Evol 20:487-494, 2005.
Crane PR, Friis EM, Pedersen KR. The origin and early diversification of angiosperm. Nature 374:27-33, 1995.
Dressler RL, Dressler K. Phylogeny and Classification of the Orchid Family, 1993.
Ewing B, Hillier L, Wendl MC, Green P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175-185, 1998.
Gravendeel B, Smithson A, Slik FJ, Schuiteman A. Epiphytism and pollinator specialization: drivers for orchid diversity? Philos Trans R Soc Lond B Biol Sci 359:1523-1535, 2004.
Han Y, Korban SS. An overview of the apple genome through BAC end sequence analysis. Plant Mol Biol 67:581-588, 2008.
Hayden MJ, Nguyen TM, Waterman A, McMichael GL, Chalmers KJ. Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat. Mol Breeding 21:271-281, 2008.
Hope ACA. A simplified Monte Carlo significance test procedure. J Stat Soc (Ser. B) 30:582-598, 1968.
Hsiao YY, Jeng MF, Tsai WC, Chuang YC, Li CY, Wu TS, Kuoh CS, Chen WH, Chen HH. A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD(X)2-4D motif. Plant J 55:719-733, 2008.
Hsiao YY, Tsai WC, Kuoh CS, Huang TH, Wang HC, Wu TS, Leu YL, Chen WH, Chen HH. Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway. BMC Plant Biol 6:14, 2006.
International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature 436:793-800, 2005.
Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard F, Vico V, Fabbro CD, Alaux M, Gaspero GD, Dumas V, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463-467, 2007.
Jakse J, Telgmann A, Jung C, Khar A, Melgar S, Cheung F, Town CD, Havey MJ. Comparative sequence and genetic analyses of asparagus BACs reveal no microsynteny with onion or rice. Theor Appl Genet 114:31-39, 2006.
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462-467, 2005.
Kao YY, Chang SB, Lin TY, Hsieh CH, Chen YH, Chen WH, Chen CC. Differential accumulation of heterochromatin as a cause for karyotype variation in Phalaenopsis orchids. Ann Bot 87:387-395, 2001.
Lai CWJ, Yu QY, Hou SB, Skelton RL, Jones MR, Lewis KLT, Murray J, Eustice M, Guan PZ, Agbayani R, Moore PH, Ming R, Presting GG. Analysis of papaya BAC end sequences reveals first insights into the organization of a fruit tree genome. Mol Genet Genomics 276:1-12, 2006.
Lescot M, Piffanelli P, Ciampi AY, Ruiz M, Blanc G, Mack JL, da Silva FR, Santos CMR, D'Hont A, Garsmeur O, Vilarinhos AD, Kanamori H, Matsumoto T, Ronning CM, Cheung F, Haas BJ, Althoff R, Arbogast T, Hine E, Pappas GJ, Sasaki T, Souza MT, Miller RNG, Glaszmann JC, Town CD. Insights into the Musa genome: Syntenic relationships to rice and between Musa species. BMC Genomics 9:58, 2008.
Lin S, Lee HC, Chen WH, Chen CC, Kao YY, Fu YM, Chen YH, Lin TY. Nuclear DNA Contents of Phalaenopsis sp. and Doritis pulcherrima. J Amer Soc Hort Sci 126:195-199, 2001.
Martin WJ, McCallum J, Shigyo M, Jakse J, Kuhl JC, Yamane N, Joyce MP, Gokce AF, Sink KC, Town CD, Havey MJ. Genetic mapping of expressed sequences in onion and in silico comparisons with rice show scant colinearity. Mol Genet Genomics 274:197-204, 2005.
Mondragon-Palomino M, Theissen G. MADS about the evolution of orchid flowers. Trends Plant Sci 13:51-59, 2008.
Otero JT, Flanagan NS. Orchid diversity--beyond deception. Trends Ecol Evol 21:64-65; author reply 65-66, 2006.
Ouyang S, Buell CR. The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32:D360-363, 2004.
Peakall R. Speciation in the Orchidaceae: confronting the challenges. Mol Ecol 16:2834-2837, 2007.
Ramirez SR, Gravendeel B, Singer RB, Marshall CR, Pierce NE. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature 448:1042-1045, 2007.
Schiestl FP, Peakall R, Mant JG, Ibarra F, Schulz C, Franke S, Francke W. The chemistry of sexual deception in an orchid-wasp pollination system. Science 302:437-438, 2003.
Shultz JL, Kazi S, Bashir R, Afzal JA, Lightfoot DA. The development of BAC-end sequence-based microsatellite markers and placement in the physical and genetic maps of soybean. Theor Appl Genet 114:1081-1090, 2007.
Singh H, Deshmukh RK, Singh A, Singh AK, Gaikwad K, Sharma TR, Mohapatra T, Singh NK. Highly variable SSR markers suitable for rice genotyping using agarose gels. Mol Breeding 25:359-364, 2010.
Smit AFA, Hubley R, Green P. RepeatMasker Open-3.0. In Computer Program, 1996.
Tan J, Wang HL, Yeh KW. Analysis of organ-specific, expressed genes in Oncidium orchid by subtractive expressed sequence tags library. Biotechnol Lett 27:1517-1528, 2005.
Tang H, Bowers JE, Wang X, Paterson AH. Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proc Natl Acad Sci USA 107:472-477, 2010.
Terol J, Naranjo MA, Ollitrault P, Talon M. Development of genomic resources for Citrus clementina: characterization of three deep-coverage BAC libraries and analysis of 46,000 BAC end sequences. BMC Genomics 9:423, 2008.
The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796-815, 2000.
Thiel T, Michalek W, Varshney RK, Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411-422, 2003.
Tian X, Zheng J, Yu J. The rice mitochondrial genomes and their variations. Plant Physiol 140:401-410, 2006.
Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN. Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biol J Linn Soc 84:1-54, 2005.
Tsai WC, Hsiao YY, Lee SH, Tung CW, Wang DP, Wang HC, Chen WH, Chen HH. Expression analysis of the ESTs derived from the flower buds of Phalaenopsis equestris. Plant Sci 170:426-432, 2006.
Tsai WC, Hsiao YY, Pan ZJ, Kuoh CS, Chen WH, Chen HH. The role of ethylene in orchid ovule development. Plant Sci 175:98-105, 2008.
Tsai WC, Kuoh CS, Chuang MH, Chen WH, Chen HH. Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol 45:831-844, 2004.
Tsai WC, Lee PF, Chen HI, Hsiao YY, Wei WJ, Pan ZJ, Chuang MH, Kuoh CS, Chen WH, Chen HH. PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol 46:1125-1139, 2005.
Wang CY, Chiou CY, Wang HL, Krishnamurthy R, Venkatagiri S, Tan J, Yeh KW. Carbohydrate mobilization and gene regulatory profile in the pseudobulb of Oncidium orchid during the flowering process. Planta 227:1063-1077, 2008.
Wing RA, Ammiraju JS, Luo M, Kim H, Yu Y, Kudrna D, Goicoechea JL, Wang W, Nelson W, Rao K, Brar D, Mackill DJ, Han B, Soderlund C, Stein L, SanMiguel P. Jackson S. The Oryza map alignment project: the golden path to unlocking the genetic potential of wild rice species. Plant Mol Biol 59:53-62, 2005.
Yu H, Goh CJ. Molecular genetics of reproductive biology in orchids. Plant Physiol 127:1390-1393, 2001.
Yuan Q, Ouyang S, Wang A, Zhu W, Maiti R, Lin H, Hamilton J, Haas B, Sultana R, Cheung F, Wortman J, Buell CR. The institute for genomic research Osa1 rice genome annotation database. Plant Physiol 138:18-26, 2005.
Chapter 3 references
Bennett MD, Leitch IJ. Nuclear DNA amounts in angiosperms. Ann Bot 76:113-176, 1995.
Bennetzen JL. Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621-627, 2005.
Chen WH, Kao YK, Tang CY, Tsai CC, Lin TY. Estimating nuclear DNA content within 50 species of the genus Phalaesnopsis Blume (Orchidaceae). Scientia Horticulturae 161:70-75, 2013.
Christenson EA. Phalaenopsis. Timber Press, Portland, OR, 2001.
Devos KM, Brown JK, Bennetzen JL. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075-1079, 2002.
Finnegan DJ. Eukaryotic transposable elements and genome evolution. Trends Genet 5:103-107, 1989.
Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR. Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569-573, 2004.
Kapitonov VV, Jurka J. Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc Natl Acad Sci USA 100:6569-6574, 2003.
Kao YY, Chang SB, Lin TY, Hsieh CH, Chen YH, Chen WH, Chen CC. Differential accumulation of heterochromatin as a cause of karyotype variation in Phalaenopsis orchids. Ann Bot 87:387-395, 2001.
Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8:464-478, 1998.
Krumsiek J, Arnold R, Ratter T. Gepard: a rapid and sensitive tool for creating dotplots on gneome scale. Bioinformatics 23:1026-1028, 2007.
Kumar A, Bennetzen JL. Plant retrotransposons. Annu Rev Genet 33:479-532, 1999.
Lin S, Lee HC, Chen WH, Chen CC, Kao YY, Fu YM, Chen YH, Lin TY. Nuclear DNA contents of Phalaenopsis species and Doritis pulcherrima. J Amer Soc Hort Sci 126:195-199, 2001.
Ma J, Devos KM, Bennetzen JL. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860-869, 2004.
Meyers BC, Tingey SV, Morgante M. Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11:1660-1676, 2001.
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001.
SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen J. Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765-768, 1996.
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, et al. The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112-1115, 2009.
The International Human Genome Sequencing Consortium (TIHGSC). Initial sequencing and analysis of the human genome. Nature 409:860-921, 2001.
Vitte C, Panaud O. LTR-retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet Genome Res 110:91-107, 2005.
Chapter 4 references
Abel S, Theologis A. Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J 5:421-427, 1994.
Aceto S, Cantone C, Chiaiese P, Ruotolo G, Sica M, Gaudio L. Isolation and phylogenetic footprinting analysis of the 5'-regulatory region of the floral homeotic gene OrcPI from Orchis italica (Orchidaceae). J Hered 101:124-131, 2010.
Alvarez-Venegas R, Pien S, Sadder M, Witmer X, Grossniklaus U, Avramova Z. ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes. Curr Biol 13:627-637, 2003.
Baum K, Groning B, Meier I. Improved ballistic transient transformation conditions for tomato fruit allow identification of organ-specific contributions of I-box and G-box to the RBCS2 promoter activity. Plant J 12:463-469, 1997.
Bernatavichute YV, Zhang X, Cokus S, Pellegrini M, Jacobsen SE. Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS One 3:e3156, 2008.
Birnbaum K, Jung JW, Wang JY, Lambert GM, Hirst JA, Galbraith DW, Benfey PN. Cell type-specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines. Nat Methods 2:615-619, 2005.
Blachutzik JO, Demir F, Kreuzer I, Hedrich R, Harms GS. Methods of staining and visualization of sphingolipid enriched and non-enriched plasma membrane regions of Arabidopsis thaliana with fluorescent dyes and lipid analogues. Plant Methods 8:28, 2012.
Blanchette M, Tompa M. FootPrinter: a program designed for phylogenetic footprinting. Nucleic Acids Res 31:3840-3842, 2003.
Bulyk ML. Computational prediction of transcription-factor binding site locations. Genome Biol 5:201, 2003.
Burgos-Rivera B, Dawe RK. An Arabidopsis tissue-specific RNAi method for studying genes essential to mitosis. PLoS One 7:e51388, 2012.
Carlson JE, Tulsieram LK, Glaubitz JC, Luk VW, Kauffeldt C, Rutledge R. Segregation of random amplified DNA markers in F1 progeny of conifers. Theor Appl Genet 83:194-200, 1991.
Chang YY, Kao NH, Li JY, Hsu WH, Liang YL, Wu JW, Yang CH. Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid. Plant Physiol 152:837-853, 2010.
Charron JB, He H, Elling AA, Deng XW. Dynamic landscapes of four histone modifications during deetiolation in Arabidopsis. Plant Cell 21:3732-3748, 2009.
Chen S, Tao L, Zeng L, Vega-Sanchez ME, Umemura K, Wang GL. A highly efficient transient protoplast system for analyzing defence gene expression and protein-protein interactions in rice. Mol Plant Pathol 7:417-427, 2006.
Chuzhanova NA, Krawczak M, Nemytikova LA, Gusev VD, Cooper DN. Promoter shuffling has occurred during the evolution of the vertebrate growth hormone gene. Gene 254:9-18, 2000.
Cozzolino S, Widmer A. Orchid diversity: an evolutionary consequence of deception. Trends Ecol Evol 20:487-494, 2005.
De Bodt S, Theissen G, Van de Peer Y. Promoter analysis of MADS-box genes in eudicots through phylogenetic footprinting. Mol Biol Evol 23:1293-1303, 2006.
Denecke J, Aniento F, Frigerio L, Hawes C, Hwang I, Mathur J, Neuhaus JM, Robinson DG. Secretory pathway research: the more experimental systems the better. Plant Cell 24:1316-1326, 2012.
Dennis ES, Peacock WJ. Epigenetic regulation of flowering. Curr Opin Plant Biol 10:520-527, 2007.
Deyholos MK, Sieburth LE. Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. Plant Cell 12:1799-1810, 2000.
Dolan JW, Fields S. Cell-type-specific transcription in yeast. Biochim Biophys Acta 1088:155-169, 1991.
Dressler RL. Phylogeny and classification of the orchid family. University of Cambridge: p320, 1993.
Gendrel AV, Lippman Z, Martienssen R, Colot V. Profiling histone modification patterns in plants using genomic tiling microarrays. Nat Methods 2:213-218, 2005.
Gramzow L, Theissen G. A hitchhiker's guide to the MADS world of plants. Genome Biol 11:214, 2010.
Hamilton DA, Roy M, Rueda J, Sindhu RK, Sanford J, Mascarenhas JP. Dissection of a pollen-specific promoter from maize by transient transformation assays. Plant Mol Biol 18:211-218, 1992.
Hennig L, Taranto P, Walser M, Schonrock N, Gruissem W. Arabidopsis MSI1 is required for epigenetic maintenance of reproductive development. Development 130:2555-2565, 2003.
Hill TA, Day CD, Zondlo SC, Thackeray AG, Irish VF. Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development 125:1711-1721, 1998.
Honma T, Goto K. The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals. Development 127:2021-2030, 2000.
Hsiao YY, Huang TH, Fu CH, Huang SC, Chen YJ, Huang YM, Chen WH, Tsai WC, Chen HH. Transcriptomic analysis of floral organs from Phalaenopsis orchid by using oligonucleotide microarray. Gene 518:91-100, 2013.
Hsu CC, Chung YL, Chen TC, Lee YL, Kuo YT, Tsai WC, Hsiao YY, Chen YW, Wu WL, Chen HH. An overview of the Phalaenopsis orchid genome through BAC end sequence analysis. BMC Plant Biol 11:3, 2011a.
Hsu CT, Liao DC, Wu FH, Liu NT, Shen SC, Chou SJ, Tung SY, Yang CH, Chan MT, Lin CS. Integration of molecular biology tools for identifying promoters and genes abundantly expressed in flowers of Oncidium Gower Ramsey. BMC Plant Biol 11:60, 2011b.
Irish VF, Litt A. Flower development and evolution: gene duplication, diversification and redeployment. Curr Opin Genet Dev 15:454-460, 2005.
Jefferson RA. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 58:387-405, 1987.
Kanno A, Saeki H, Kameya T, Saedler H, Theissen G. Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Mol Biol 52:831-841, 2003.
Kellogg EA. Evolution of developmental traits. Curr Opin Plant Biol 7:92-98, 2004.
Kramer EM, Dorit RL, Irish VF. Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765-783, 1998.
Kramer EM, Jaramillo MA. Genetic basis for innovations in floral organ identity. J Exp Zool B Mol Dev Evol 304:526-535, 2005.
Lafos M, Kroll P, Hohenstatt ML, Thorpe FL, Clarenz O, Schubert D. Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLoS Genet 7:e1002040, 2011.
Li YH, Tremblay FM, Seguin A. Transient transformation of pollen and embryogenic tissues of white spruce (Picea glauca (Moench.) Voss) resulting from microprojectile bombardment. Plant Cell Rep 13:661-665, 1994.
Luo M, Wang YY, Liu X, Yang S, Lu Q, Cui Y, Wu K. HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. J Exp Bot 63:3297-3306, 2012.
Mondragon-Palomino M, Hiese L, Harter A, Koch MA, Theissen G. Positive selection and ancient duplications in the evolution of class B floral homeotic genes of orchids and grasses. BMC Evol Biol 9:81, 2009.
Mondragon-Palomino M, Theissen G. MADS about the evolution of orchid flowers. Trends Plant Sci 13:51-59, 2008.
Mondragon-Palomino M, Theissen G. Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes. Ann Bot 104:583-594, 2009.
Mondragon-Palomino M, Theissen G. Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the 'orchid code'. Plant J 66:1008-1019, 2011.
Moon YH, Chen L, Pan RL, Chang HS, Zhu T, Maffeo DM, Sung ZR. EMF genes maintain vegetative development by repressing the flower program in Arabidopsis. Plant Cell 15:681-693, 2003.
Nam J, dePamphilis CW, Ma H, Nei M. Antiquity and evolution of the MADS-box gene family controlling flower development in plants. Mol Biol Evol 20:1435-1447, 2003.
Pan ZJ, Cheng CC, Tsai WC, Chung MC, Chen WH, Hu JM, Chen HH. The duplicated B-class MADS-box genes display dualistic characters in orchid floral organ identity and growth. Plant Cell Physiol 52:1515-1531, 2011.
Roudier F, Teixeira FK, Colot V. Chromatin indexing in Arabidopsis: an epigenomic tale of tails and more. Trends Genet 25:511-517, 2009.
Rudall PJ, Bateman RM. Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots. Biol Rev Camb Philos Soc 77:403-441, 2002.
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001.
Sanford JC, Smith FD, Russell JA. Optimizing the biolistic process for different biological applications. Methods Enzymol 217:483-509, 1993.
Schubert D, Primavesi L, Bishopp A, Roberts G, Doonan J, Jenuwein T, Goodrich J. Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27. EMBO J 25:4638-4649, 2006.
Sheen J. Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127:1466-1475, 2001.
Sheldon CC, Conn AB, Dennis ES, Peacock WJ. Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression. Plant Cell 14:2527-2537, 2002.
Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PT, Staub JM, Nehra NS. Technical Advance: Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209-216, 1999.
Su CL, Chen WC, Lee AY, Chen CY, Chang YC, Chao YT, Shih MC. A modified ABCDE model of flowering in orchids based on gene expression profiling studies of the moth orchid Phalaenopsis aphrodite. PLoS One 8:e80462, 2013.
Tang W, Perry SE. Binding site selection for the plant MADS domain protein AGL15: an in vitro and in vivo study. J Biol Chem 278:28154-28159, 2003.
Tautz D. Evolution of transcriptional regulation. Curr Opin Genet Dev 10:575-579, 2000.
Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Munster T, Winter KU, Saedler H. A short history of MADS-box genes in plants. Plant Mol Biol 42:115-149, 2000.
Tilly JJ, Allen DW, Jack T. The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development 125:1647-1657, 1998.
Treisman R. The serum response element. Trends Biochem Sci 17:423-426, 1992.
Tsai WC, Kuoh CS, Chuang MH, Chen WH, Chen HH. Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol 45:831-844, 2004.
Tsai WC, Lee PF, Chen HI, Hsiao YY, Wei WJ, Pan ZJ, Chuang MH, Kuoh CS, Chen WH, Chen HH. PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol 46:1125-1139, 2005.
Ueki S, Lacroix B, Krichevsky A, Lazarowitz SG, Citovsky V. Functional transient genetic transformation of Arabidopsis leaves by biolistic bombardment. Nat Protoc 4:71-77, 2009.
Wang YC, Klein TM, Fromm M, Cao J, Sanford JC, Wu R. Transient expression of foreign genes in rice, wheat and soybean cells following particle bombardment. Plant Mol Biol 11:433-439, 1988.
Wasserman WW, Palumbo M, Thompson W, Fickett JW, Lawrence CE. Human-mouse genome comparisons to locate regulatory sites. Nat Genet 26:225-228, 2000.
Weitzman JB. Tracking evolution's footprints in the genome. J Biol 2:9, 2003.
Whipple CJ, Ciceri P, Padilla CM, Ambrose BA, Bandong SL, Schmidt RJ. Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development 131:6083-6091, 2004.
Xu F, Park MR, Kitazumi A, Herath V, Mohanty B, Yun SJ, de los Reyes BG. Cis-regulatory signatures of orthologous stress-associated bZIP transcription factors from rice, sorghum and Arabidopsis based on phylogenetic footprints. BMC Genomics 13:497, 2012.
Yamaguchi T, Lee DY, Miyao A, Hirochika H, An G, Hirano HY. Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell 18:15-28, 2006.
Yang SH, Yu H, Goh CJ. Isolation and characterization of the orchid cytokinin oxidase DSCKX1 promoter. J Exp Bot 53:1899-1907, 2002.
Zhang G, Lu S, Chen TA, Funk CR, Meyer WA. Transformation of triploid bermudagrass (Cynodon dactylon x C. transvaalensis cv. TifEagle) by means of biolistic bombardment. Plant Cell Rep 21:860-864, 2003.
Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7:30, 2011.
Chapter 5 references
Aharoni A, De Vos CH, Wein M, Sun Z, Greco R, Kroon A, Mol JN, O'Connell AP. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J 28:319-332, 2001.
Albert NW, Lewis DH, Zhang H, Schwinn KE, Jameson PE, Davies KM. Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant J 65:771-784, 2011.
Chen WH, Hsu CY, Cheng HY, Chang H, Chen HH, Ger MJ. Downregulation of putative UDP-glucose: flavonoid 3-O-glucosyltransferase gene alters flower coloring in Phalaenopsis. Plant Cell Rep 30:1007-1017, 2011.
Chen YH, Tsai YJ, Huang JZ, Chen FC. Transcription analysis of peloric mutants of Phalaenopsis orchids derived from tissue culture. Cell Res 15:639-657, 2005.
Chiou CY, Yeh KW. Differential expression of MYB gene (OgMYB1) determines color patterning in floral tissue of Oncidium Gower Ramsey. Plant Mol Biol 66:379-388, 2008.
Davies KM, Albert NW, Schwinn KE. From landing lights to mimicry: the molecular regulation of flower colouration and mechanisms for pigmentation patterning. Func Plant Biol 39:619-638, 2012.
de Vetten N, Quattrocchio F, Mol J, Koes R. The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Dev 11:1422-1434, 1997.
Debeaujon I, Nesi N, Perez P, Devic M, Grandjean O, Caboche M, Lepiniec L. Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell 15:2514-2531, 2003.
Feller A, Machemer K, Braun EL, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66:94-116, 2011.
Fu CH, Chen YW, Hsiao YY, Pan ZJ, Liu ZJ, Huang YM, Tsai WC, Chen HH. OrchidBase: a collection of sequences of the transcriptome derived from orchids. Plant Cell Physiol 52:238-243, 2011.
Griesbach RJ, Beck RM, Hammond J. Gene expression in the star mutation of Petunia x hybrida Vilm. J Am Soc Hortic Sci 132:680-690, 2007.
Grotewold E. The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761-780, 2006.
Heuschen B, Gumbert A, Lunau K. A generalised mimicry system involving angiosperm flower colour, pollen and bumblebees’ innate colour preferences. Plant Syste Evol 252:121-137, 2005.
Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62:2465-2483, 2011.
Hsieh MH, Lu HC, Pan ZJ, Yeh HH, Wang SS, Chen WH, Chen HH. Optimizing virus-induced gene silencing efficiency with Cymbidium mosaic virus in Phalaenopsis flower. Plant Sci 201-202:25-41, 2013a.
Hsieh MH, Pan ZJ, Lai PH, Lu HC, Yeh HH, Hsu CC, Wu WL, Chung MC, Wang SS, Chen WH, Chen HH. Virus-induced gene silencing unravels multiple transcription factors involved in floral growth and development in Phalaenopsis orchids. J Exp Bot 64:3869-3884, 2013b.
Iida S, Hoshino A, Johzuka-Hisatomi Y, Habu Y, Inagaki Y. Floricultural traits and transposable elements in the Japanese and common morning glories. Ann N Y Acad Sci 870:265-274, 1999.
Inagaki Y, Hisatomi Y, Suzuki T, Kasahara K, lida S. lsolation of a Suppressor-mutator/Enhancer-like transposable element, Tpn1, from Japanese bearing variegated flowers. Plant Cell 6:375-383, 1994.
Itoh Y, Higeta D, Suzuki A, Yoshida H, Ozeki Y. Excision of transposable elements from the chalcone isomerase and dihydroflavonol 4-reductase genes may contribute to the variegation of the yellow-flowered carnation (Dianthus caryophyllus). Plant Cell Physiol 43:578-585, 2002.
Jaakola L, Poole M, Jones MO, Kamarainen-Karppinen T, Koskimaki JJ, Hohtola A, Haggman H, Fraser PD, Manning K, King GJ, Thomson H, Seymour GB. A SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits. Plant Physiol 153:1619-1629, 2010.
Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J 19:6150-6161, 2000.
Koes R, Verweij W, Quattrocchio F. Flavonoids: a colourful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236-242, 2005.
Koseki M, Goto K, Masuta C, Kanazawa A. The star-type color pattern in Petunia hybrida ‘Red star’ flowers is induced by sequence specific degradation of chalcone synthase RNA. Plant Cell Physiol 46:1879-1883, 2005.
Lalusin AG, Nishita K, Kim SH, Ohta M, Fujimura T. A new MADS-box gene (IbMADS10) from sweet potato (Ipomoea batatas (L.) Lam) is involved in the accumulation of anthocyanin. Mol Genet Genomics 275:44-54, 2006.
Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M. Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405-430, 2006.
Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie TK, Espley RV, Hellens RP, Allan AC. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10:50, 2010.
Lowry DB, Sheng CC, Lasky JR, Willis JH. Five anthocyanin polymorphisms are associated with an R2R3-MYB cluster in Mimulus guttatus (Phrymaceae). Am J Bot 99:82-91, 2012.
Lu HC, Chen HH, Tsai WC, Chen WH, Su HJ, Chang DC, Yeh HH. Strategies for functional validation of genes involved in reproductive stages of orchids. Plant Physiol 143:558-569, 2007.
Lu HC, Hsieh MH, Chen CE, Chen HH, Wang HI, Yeh HH. A high-throughput virus-induced gene-silencing vector for screening transcription factors in virus-induced plant defense response in orchid. Mol Plant Microbe Interact 25:738-746, 2012.
Lunau K, Fieselmann G, Heuschen B, van de Loo A. Visual targeting of components of floral colour patterns in flower-naive bumblebees (Bombus terrestris; Apidae). Naturwissenschaften 93:325-328, 2006.
Ma H, Pooler M, Griesbach R. Anthocyanin regulatory/structural gene expression in Phalaenopsis. J Am Soc Hortic Sci 134:88-96, 2009.
Martins TR, Berg JJ, Blinka S, Rausher MD, Baum DA. Precise spatio-temporal regulation of the anthocyanin biosynthetic pathway leads to petal spot formation in Clarkia gracilis (Onagraceae). New Phytol 197:958-969, 2013.
Medel R, Botto-Mahan C, Kalin-Arroyo M. Pollinator-mediated selection on the nectar guide phenotype in the Andean monkey flower, Mimulus luteus. Ecology 84:1721-1732, 2003.
Nesi N, Debeaujon I, Jond C, Stewart AJ, Jenkins GI, Caboche M, Lepiniec L. The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell 14:2463-2479, 2002.
O'Neill SD, Nadeau JA, Zhang XS, Bui AQ, Halevy AH. Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell 5:419-432, 1993.
Pan ZJ, Chen YY, Du JS, Chung MC, Tsai WC, Wang CN, Chen HH. Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes. New Phytol 202:1024-1042, 2014.
Pan ZJ, Cheng CC, Tsai WC, Chung MC, Chen WH, Hu JM, Chen HH. The duplicated B-class MADS-box genes display dualistic characters in orchid floral organ identity and growth. Plant Cell Physiol 52:1515-1531, 2011.
Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J 6:3553-3558, 1987.
Petroni K, Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 181:219-229, 2011.
Saito R, Fukuta N, Ohmiya A, Itoh Y, Ozeki Y, Kuchitsu K, Nakayama M. Regulation of anthocyanin biosynthesis involved in the formation of marginal picotee petals in Petunia. Plant Sci 170:828-834, 2006.
Sasaki K, Aida R, Yamaguchi H, Shikata M, Niki T, Nishijima T, Ohtsubo N. Functional divergence within class B MADS-box genes TfGLO and TfDEF in Torenia fournieri Lind. Mol Genet Genomics 284:399-414, 2010.
Schwinn K, Venail J, Shang Y, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18:831-851, 2006.
Shang Y, Venail J, Mackay S, Bailey PC, Schwinn KE, Jameson PE, Martin CR, Davies KM. The molecular basis for venation patterning of pigmentation and its effect on pollinator attraction in flowers of Antirrhinum. New Phytol 189:602-615, 2011.
Spelt C, Quattrocchio F, Mol JN, Koes R. Anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell 12:1619-1632, 2000.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731-2729, 2011.
Tsai WC, Fu CH, Hsiao YY, Huang YM, Chen LJ, Wang M, Liu ZJ, Chen HH. OrchidBase 2.0: comprehensive collection of Orchidaceae floral transcriptomes. Plant Cell Physiol 54:e7, 2013.
Tsai WC, Kuoh CS, Chuang MH, Chen WH, Chen HH. Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol 45:831-844, 2004.
Ushimaru A, Watanabe T, Nakata K. Colored floral organs influence pollinator behavior and pollen transfer in Commelina communis (Commelinaceae). Am J Bot 94:249-258, 2007.
Yamagishi M, Akagi K. Morphology and heredity of tepal spots in Asiatic and oriental hybrid lilies (Lilium spp.). Euphytica 194:325-334, 2013.
Yamagishi M, Shimoyamada Y, Nakatsuka T, Masuda K. Two R2R3-MYB genes, homologs of Petunia AN2, regulate anthocyanin biosyntheses in flower tepals, tepal spots and leaves of asiatic hybrid lily. Plant Cell Physiol 51:463-474, 2010.
Yamagishi M, Toda S, Tasaki K. The novel allele of the LhMYB12 gene is involved in splatter-type spot formation on the flower tepals of Asiatic hybrid lilies (Lilium spp.). New Phytol 201:1009-1020, 2014.
Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF. Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J 40:22-34, 2004.