簡易檢索 / 詳目顯示

研究生: 蕭玉朋
Hsiao, Yu-Peng
論文名稱: Rab37在肺癌相關巨噬細胞中調控TNF-α 的生成
Rab37 regulates TNF-α production in lung cancer-associated macrophages
指導教授: 張志鵬
Chang, Chih-Peng
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 71
中文關鍵詞: 肺癌類鐸受體2腫瘤相關巨噬細胞腫瘤壞死因子αRab37Versican
外文關鍵詞: Lung cancer, Toll-like receptor 2, Tumor-associated macrophage, Tumor necrosis factor-α, Rab37, Versican
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肺癌(Lung cancer)在台灣是第二常見且致死率第一名的癌症。將近有20%的病患是沒有明顯的症狀,並且有40%的病患在被診斷為肺癌時,都已經有癌細胞轉移的現象。腫瘤相關巨噬細胞(tumor-associated macrophages)是腫瘤微環境(tumor microenvironment)的成員之一,並且被認為具有促進腫瘤生長以及轉移的能力。曾有研究指出,肺癌相關巨噬細胞能夠透過類鐸受體2(Toll-like receptor 2)的訊息傳遞路徑,來分泌腫瘤壞死因子α(tumor necrosis factor-α)至腫瘤微環境中,進而促使肺癌細胞的轉移。近期有另外一篇研究指出,一個名為Rab37的小GTP水解酵素(small GTPase),能夠在巨噬細胞中調控類鐸受體4所誘發腫瘤壞死因子α的分泌。然而,是否Rab37也有參與以及調控肺癌相關巨噬細胞來分泌腫瘤壞死因子α仍然是未知的。在此篇研究中,我們發現在給予巨噬細胞小鼠Lewis肺癌細胞的條件培養液(Lewis lung carcinoma-conditioned medium)之後,透過類鐸受體2的訊息傳遞下,Rab37以及腫瘤壞死因子α的表現量皆有上升,並且也增加了腫瘤壞死因子α的分泌量。除此之外,在巨噬細胞中將Rab37進行基因下調(knockdown)的情況之下,會同時降低Lewis肺癌細胞的條件培養液所誘發腫瘤壞死因子α的表現量以及分泌量。然而,主要用來幫助腫瘤壞死因子α轉錄的轉錄因子NF-κB,在活化上並沒有受到影響。有趣的是,同樣在巨噬細胞中將Rab37進行基因下調(knockdown)的情況之下,相較於腫瘤壞死因子α,同為NF-κB所調控的介白素1β(interleukin-1β)在給予Lewis肺癌細胞的條件培養液之後轉錄量反而上升。這也代表Rab37在巨噬細胞中,似乎具有分別調控Lewis肺癌細胞的條件培養液所誘發腫瘤壞死因子α以及介白素1β轉錄的能力。除此之外,我們發現重組蛋白versican(recombinant versican),一個來自於肺癌細胞的可溶性蛋白質,在透過類鐸受體4的訊息路徑之下,也能夠使巨噬細胞誘發Rab37所調控腫瘤壞死因子α的表現以及分泌。最後,我們的發現對於Rab37如何在肺癌相關巨噬細胞中調控腫瘤壞死因子α的產生提供了一個新穎的機制,並且也提出了versican在這其中可能扮演的獨特角色。

    Lung cancer is the number one cancer-related death in Taiwan and number two common cancer among men and women. There are almost 20% of patients without any symptom, and 40% of newly diagnosed patients with lung cancer already have metastasis. Tumor-associated macrophages (TAMs) are one of the members found in the tumor microenvironment (TME) and have the ability to promote tumor progression and metastasis. A previous study indicates that TAMs are able to secrete tumor necrosis factor-α (TNF-α) to foster lung cancer metastasis via toll-like receptor 2 (TLR2) signaling pathway. Recently, one report shows that Rab37, a small GTPase, is able to regulate TNF-α secretion from macrophages via TLR4 signaling pathway. However, it is unclear whether Rab37 controls TNF-α secretion from lung cancer-associated macrophages. Here we showed that Lewis lung carcinoma-conditioned medium (LCM) is able to upregulate the expression of both Rab37 and TNF-α, and hence increase the secretion of TNF-α from macrophages in a TLR2-dependent manner. Silencing of Rab37 in macrophages attenuates both LCM-induced TNF-α transcription and secretion; however, the activation of NF-κB, the major transcription factor of TNF-α, is not altered. Interestingly, in contrast to TNF-α, mRNA of IL-1β, another NF-κB-regulated cytokine, is upregulated in Rab37-silenced macrophages after LCM treatment, which indicates that Rab37 may differentially regulate the transcription of LCM-induced TNF-α and IL-1β. Furthermore, we found that recombinant versican (Vcan), which is reported as a lung cancer-derived soluble protein, is capable of triggering Rab37-mediated TNF-α expression and secretion in macrophages via TLR4 signaling. Our findings provide a novel mechanism of how Rab37 regulates the production of TNF-α in lung cancer-associated macrophages and a unique role of Vcan in Rab37-regulated TNF-α production in macrophages.

    中文摘要 I ABSTRACT III ACKNOWLEDGEMENT V TABLE OF CONTENTS VI ABBREVIATIONS IX I. INTRODUCTION 1 1. Lung cancer 1 1.1 Etiology of lung cancer 1 1.1.1 Tobacco smoking 1 1.1.2 Radon exposure 2 1.1.3 Asbestos exposure 3 1.1.4 Genetic factors 4 1.2 Histological classification of lung cancer 5 1.2.1 Small cell lung cancer (SCLC) 5 1.2.2 Non-small cell lung cancer (NSCLC) 5 1.3 Treatments of lung cancer 6 2. Tumor microenvironment and tumor metastasis 7 2.1 Tumor microenvironment (TME) 7 2.1.1 Cancer-secreted factors 8 2.1.1.1 Osteopontin (OPN) 8 2.1.1.2 High-mobility group box 1 (HMGB1) 8 2.1.1.3 Versican (Vcan) 9 2.2 Tumor-associated macrophages (TAM) 9 2.2.1 Proinflammatory cytokines secreted from TAMs 10 2.2.2 Toll-like receptor (TLR) signaling 11 3. Transcriptions of TNF-α and IL-1β 12 3.1 TNF-α 12 3.2 IL-1β 13 4. Rab small GTPase 13 4.1 Rab proteins in tumors 14 4.1.1 Rab37 in tumor cells 15 II. OBJECTIVE AND SPECIFIC AIMS 17 III. MATERIALS AND METHODS 18 1. Materials 18 1.1 Animal 18 1.2 Cell culture 18 1.3 Antibodies 19 1.4 Specific primer sequences 20 1.5 shRNA plasmids 21 1.6 Reagents 21 2. Methods 26 2.1 Preparation of LLC-conditioned medium (LCM) 26 2.2 Total cellular RNA extraction, RT-PCR and qPCR analysis 26 2.3 Western blotting 27 2.4 Lentivirus preparation and infection 28 2.5 Enzyme-linked immunosorbent assay (ELISA) 28 2.6 Luciferase reporter assay 28 2.7 Flow cytometry 29 2.8 Immunofluorescence assay 29 2.9 Statistical analysis 30 IV. RESULTS 31 1. LCM induces upregulation and colocalization of both TNF-α and Rab37 in macrophages. 31 2. Rab37 is crucial for LCM-triggered TNF-α production in macrophages. 32 3. Rab37 positively regulates p38 but not NF-κB activation in LCM-treated macrophages. 32 4. TLR2 signaling is crucial for LCM-induced TNF-α expression and secretion in macrophages. 34 5. Recombinant Vcan induces TNF-α secretion and Rab37 upregulation and colocalization of both proteins in macrophages. 34 6. Rab37 is crucial in TNF-α production but not in NF-κB activation in Vcan-treated macrophages. 35 7. TLR4 signaling is more important in recombinant Vcan-induced TNF-α production in macrophages. 36 V. CONCLUSIONS 37 VI. DISCUSSION 38 VII. REFERENCES 44 VIII. FIGURES 56 Fig. 1 LCM induces upregulation and colocalization of both TNF-α and Rab37 in macrophages. 57 Fig. 2 Rab37 is crucial for LCM-triggered TNF-α production in macrophages. 59 Fig. 3 Rab37 positively regulates p38 but not NF-κB in LCM-treated macrophages. 61 Fig. 4 TLR2 signaling is crucial for LCM-induced TNF-α expression and secretion in macrophages. 62 Fig. 5 Recombinant Vcan induces TNF-α secretion and Rab37 upregulation and colocalization of both proteins in macrophages. 64 Fig. 6 Rab37 is crucial in TNF-α production but not in NF-κB activation in Vcan-treated macrophages. 67 Fig. 7 TLR4 signaling is more important in recombinant Vcan-induced TNF-α production in macrophages. 68 Fig. 8 The schematic model of Rab37 regulates TNF-α production in LCM- and recombinant Vcan-stimulated macrophages. 69 IX. APPENDIX 70 Appendix 1 Recombinant Vcan-triggered signaling is through mainly TLR4, but not TLR2. 71

    1 Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A. & Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians , doi:10.3322/caac.21492 (2018).
    2 Wong, M. C. S., Lao, X. Q., Ho, K. F., Goggins, W. B. & Tse, S. L. A. Incidence and mortality of lung cancer: global trends and association with socioeconomic status. Scientific Reports 7, 14300, doi:10.1038/s41598-017-14513-7 (2017).
    3 Sharma, D., Newman, T. G. & Aronow, W. S. Lung cancer screening: history, current perspectives, and future directions. Archives of Medical Science 11, 1033-1043, doi:10.5114/aoms.2015.54859 (2015).
    4 Steeg, P. S. Targeting metastasis. Nature Reviews Cancer 16, 201-218, doi:10.1038/nrc.2016.25 (2016).
    5 Sadeghi-Gandomani H., A.-T. A., Ghoncheh M., Yousefi S. M., Delaram M., Salehiniya H. Lung cancer in the world: the incidence, mortality rate and risk factors. World Cancer Research Journal 4 (2017).
    6 Dela Cruz, C. S., Tanoue, L. T. & Matthay, R. A. Lung cancer: epidemiology, etiology, and prevention. Clinics in Chest Medicine 32, 605-644, doi:10.1016/j.ccm.2011.09.001 (2011).
    7 Sun, S., Schiller, J. H. & Gazdar, A. F. Lung cancer in never smokers--a different disease. Nature Reviews Cancer 7, 778-790, doi:10.1038/nrc2190 (2007).
    8 Gazdar, A. F. DNA Repair and Survival in Lung Cancer — The Two Faces of Janus. New England Journal of Medicine 356, 771-773, doi:10.1056/NEJMp068308 (2007).
    9 Salehiniya, H., Vejdani, M., Sadeghi-Gandomani, H., Sharifi-Esfahani, M., Otroshi, O., Afshar, M., Pourgholam-Amiji, N. & Khani, Y. Tobacco Smoking and Cancer Types: A Review. Biomedical Research and Therapy 5, 2142-2159, doi:10.15419/bmrat.v5i4.428 (2018).
    10 Kligerman, S. & White, C. Epidemiology of lung cancer in women: risk factors, survival, and screening. American Journal of Roentgenology 196, 287-295, doi:10.2214/AJR.10.5412 (2011).
    11 Furrukh, M. Tobacco Smoking and Lung Cancer: Perception-changing facts. Sultan Qaboos University medical journal 13, 345-358 (2013).
    12 Hecht, S. S. Tobacco Smoke Carcinogens and Lung Cancer. JNCI: Journal of the National Cancer Institute 91, 1194-1210, doi:10.1093/jnci/91.14.1194 %J (1999).
    13 Samet, J. M. Residential Radon and Lung Cancer: End of the Story? Journal of Toxicology and Environmental Health, Part A 69, 527-531, doi:10.1080/15287390500260879 (2006).
    14 Samet, J. M. & Eradze, G. R. Radon and lung cancer risk: taking stock at the millenium. Environmental Health Perspectives 108, 635-641, doi:10.1289/ehp.00108s4635 (2000).
    15 Hei, T. K., Piao, C. Q., Willey, J. C., Thomas, S. & Hall, E. J. Malignant transformatin of human bronchial epithelial cells by radon-simulated α-particles. Carcinogenesis 15, 431-437, doi:10.1093/carcin/15.3.431 %J (1994).
    16 Subramanian, J. & Govindan, R. Lung Cancer in Never Smokers: A Review. Journal of Clinical Oncology 25, 561-570, doi:10.1200/jco.2006.06.8015 (2007).
    17 Suzanne Dixon, M., MS, RDN. Asbestos-Related Lung Cancer, https://www.asbestos.com/cancer/lung-cancer/ (2019).
    18 Zhang, L.-P., Wang, C.-P., Li, L.-H., Tang, Y.-F. & Li, W.-C. The interaction between smoking and CYP1A1 MspI polymorphism on lung cancer: a meta-analysis in the Chinese population. European Journal of Cancer Care 26, e12459, doi:10.1111/ecc.12459 (2017).
    19 San Jose, C., Cabanillas, A., Benitez, J., Carrillo, J. A., Jimenez, M. & Gervasini, G. CYP1A1 gene polymorphisms increase lung cancer risk in a high-incidence region of Spain: a case control study. BMC cancer 10, 463-463, doi:10.1186/1471-2407-10-463 (2010).
    20 Fathi, Z., Syn, N. L., Zhou, J. G. & Roudi, R. Molecular epidemiology of lung cancer in Iran: implications for drug development and cancer prevention. Journal of Human Genetics 63, 783-794, doi:10.1038/s10038-018-0450-y (2018).
    21 Pikor, L. A., Ramnarine, V. R., Lam, S. & Lam, W. L. Genetic alterations defining NSCLC subtypes and their therapeutic implications. Lung Cancer 82, 179-189, doi:10.1016/j.lungcan.2013.07.025 (2013).
    22 Scarpace, S. L. Metastatic squamous cell non-small-cell lung cancer (NSCLC): disrupting the drug treatment paradigm with immunotherapies. Drugs in context 4, 212289-212289, doi:10.7573/dic.212289 (2015).
    23 Gersten, T. Lung cancer - small cell, https://medlineplus.gov/ency/article/000122.htm
    24 Oser, M. G., Niederst, M. J., Sequist, L. V. & Engelman, J. A. Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin. The Lancet Oncology 16, e165-e172, doi:10.1016/s1470-2045(14)71180-5 (2015).
    25 What is non-small cell lung cancer?, https://cancer.org/cancer/lungcancer-non-smallcell/detailedguide/non-small-cell-lung-cancer-what-is-non-small-cell-lung-cancer (2016).
    26 Hirsch, F. R., Scagliotti, G. V., Mulshine, J. L., Kwon, R., Curran, W. J., Wu, Y.-L. & Paz-Ares, L. Lung cancer: current therapies and new targeted treatments. The Lancet 389, 299-311, doi:10.1016/S0140-6736(16)30958-8 (2017).
    27 Herbst, R. S., Morgensztern, D. & Boshoff, C. The biology and management of non-small cell lung cancer. Nature 553, 446-454, doi:10.1038/nature25183 (2018).
    28 Curran, W. J., Jr, Paulus, R., Langer, C. J., Komaki, R., Lee, J. S., Hauser, S., Movsas, B., Wasserman, T., Rosenthal, S. A., Gore, E., Machtay, M., Sause, W. & Cox, J. D. Sequential vs Concurrent Chemoradiation for Stage III Non–Small Cell Lung Cancer: Randomized Phase III Trial RTOG 9410. JNCI: Journal of the National Cancer Institute 103, 1452-1460, doi:10.1093/jnci/djr325 %J (2011).
    29 Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., Harris, P. L., Haserlat, S. M., Supko, J. G., Haluska, F. G., Louis, D. N., Christiani, D. C., Settleman, J. & Haber, D. A. Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non–Small-Cell Lung Cancer to Gefitinib. New England Journal of Medicine 350, 2129-2139, doi:10.1056/NEJMoa040938 (2004).
    30 Paez, J. G., Jänne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., Herman, P., Kaye, F. J., Lindeman, N., Boggon, T. J., Naoki, K., Sasaki, H., Fujii, Y., Eck, M. J., Sellers, W. R., Johnson, B. E. & Meyerson, M. EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy. Science 304, 1497, doi:10.1126/science.1099314 (2004).
    31 Rikova, K., Guo, A., Zeng, Q., Possemato, A., Yu, J., Haack, H., Nardone, J., Lee, K., Reeves, C., Li, Y., Hu, Y., Tan, Z., Stokes, M., Sullivan, L., Mitchell, J., Wetzel, R., MacNeill, J., Ren, J. M., Yuan, J., Bakalarski, C. E., Villen, J., Kornhauser, J. M., Smith, B., Li, D., Zhou, X., Gygi, S. P., Gu, T.-L., Polakiewicz, R. D., Rush, J. & Comb, M. J. Global Survey of Phosphotyrosine Signaling Identifies Oncogenic Kinases in Lung Cancer. Cell 131, 1190-1203, doi:10.1016/j.cell.2007.11.025 (2007).
    32 Dong, H., Strome, S. E., Salomao, D. R., Tamura, H., Hirano, F., Flies, D. B., Roche, P. C., Lu, J., Zhu, G., Tamada, K., Lennon, V. A., Celis, E. & Chen, L. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nature Medicine 8, 793-800, doi:10.1038/nm730 (2002).
    33 Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., Powderly, J. D., Carvajal, R. D., Sosman, J. A., Atkins, M. B., Leming, P. D., Spigel, D. R., Antonia, S. J., Horn, L., Drake, C. G., Pardoll, D. M., Chen, L., Sharfman, W. H., Anders, R. A., Taube, J. M., McMiller, T. L., Xu, H., Korman, A. J., Jure-Kunkel, M., Agrawal, S., McDonald, D., Kollia, G. D., Gupta, A., Wigginton, J. M. & Sznol, M. Safety, Activity, and Immune Correlates of Anti–PD-1 Antibody in Cancer. New England Journal of Medicine 366, 2443-2454, doi:10.1056/NEJMoa1200690 (2012).
    34 Garon, E. B., Rizvi, N. A., Hui, R., Leighl, N., Balmanoukian, A. S., Eder, J. P., Patnaik, A., Aggarwal, C., Gubens, M., Horn, L., Carcereny, E., Ahn, M.-J., Felip, E., Lee, J.-S., Hellmann, M. D., Hamid, O., Goldman, J. W., Soria, J.-C., Dolled-Filhart, M., Rutledge, R. Z., Zhang, J., Lunceford, J. K., Rangwala, R., Lubiniecki, G. M., Roach, C., Emancipator, K. & Gandhi, L. Pembrolizumab for the Treatment of Non–Small-Cell Lung Cancer. New England Journal of Medicine 372, 2018-2028, doi:10.1056/NEJMoa1501824 (2015).
    35 Herbst, R. S., Soria, J.-C., Kowanetz, M., Fine, G. D., Hamid, O., Gordon, M. S., Sosman, J. A., McDermott, D. F., Powderly, J. D., Gettinger, S. N., Kohrt, H. E. K., Horn, L., Lawrence, D. P., Rost, S., Leabman, M., Xiao, Y., Mokatrin, A., Koeppen, H., Hegde, P. S., Mellman, I., Chen, D. S. & Hodi, F. S. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 563, doi:10.1038/nature14011 (2014).
    36 Brahmer, J., Reckamp, K. L., Baas, P., Crinò, L., Eberhardt, W. E. E., Poddubskaya, E., Antonia, S., Pluzanski, A., Vokes, E. E., Holgado, E., Waterhouse, D., Ready, N., Gainor, J., Arén Frontera, O., Havel, L., Steins, M., Garassino, M. C., Aerts, J. G., Domine, M., Paz-Ares, L., Reck, M., Baudelet, C., Harbison, C. T., Lestini, B. & Spigel, D. R. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non–Small-Cell Lung Cancer. New England Journal of Medicine 373, 123-135, doi:10.1056/NEJMoa1504627 (2015).
    37 Hanahan, D. & Weinberg, Robert A. Hallmarks of Cancer: The Next Generation. Cell 144, 646-674, doi:10.1016/j.cell.2011.02.013 (2011).
    38 Wang, M., Zhao, J., Zhang, L., Wei, F., Lian, Y., Wu, Y., Gong, Z., Zhang, S., Zhou, J., Cao, K., Li, X., Xiong, W., Li, G., Zeng, Z. & Guo, C. Role of tumor microenvironment in tumorigenesis. Journal of Cancer 8, 761-773, doi:10.7150/jca.17648 (2017).
    39 Chen, F., Zhuang, X., Lin, L., Yu, P., Wang, Y., Shi, Y., Hu, G. & Sun, Y. New horizons in tumor microenvironment biology: challenges and opportunities. BMC medicine 13, 45-45, doi:10.1186/s12916-015-0278-7 (2015).
    40 Shurin, M. R. Osteopontin controls immunosuppression in the tumor microenvironment. The Journal of Clinical Investigation 128, 5209-5212, doi:10.1172/JCI124918 (2018).
    41 Rangaswami, H., Bulbule, A. & Kundu, G. C. Osteopontin: role in cell signaling and cancer progression. Trends in Cell Biology 16, 79-87, doi:10.1016/j.tcb.2005.12.005 (2006).
    42 Klement, J. D., Paschall, A. V., Redd, P. S., Ibrahim, M. L., Lu, C., Yang, D., Celis, E., Abrams, S. I., Ozato, K. & Liu, K. An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. The Journal of Clinical Investigation 128, 5549-5560, doi:10.1172/JCI123360 (2018).
    43 Łagiedo, M., Sikora, J. & Kaczmarek, M. Damage-Associated Molecular Patterns in the Course of Lung Cancer – A Review. Scandinavian Journal of Immunology 82, 95-101, doi:10.1111/sji.12308 (2015).
    44 Yan, W., Chang, Y., Liang, X., Cardinal, J. S., Huang, H., Thorne, S. H., Monga, S. P. S., Geller, D. A., Lotze, M. T. & Tsung, A. High-mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatology 55, 1863-1875, doi:10.1002/hep.25572 (2012).
    45 Wu, L. & Yang, L. The function and mechanism of HMGB1 in lung cancer and its potential therapeutic implications. Oncology Letters 15, 6799-6805, doi:10.3892/ol.2018.8215 (2018).
    46 Zhang, X., Wang, H. & Wang, J. Expression of HMGB1 and NF-κB p65 and its significance in non-small cell lung cancer. Contemporary oncology (Poznan, Poland) 17, 350-355, doi:10.5114/wo.2013.35291 (2013).
    47 Nandadasa, S., Foulcer, S. & Apte, S. S. The multiple, complex roles of versican and its proteolytic turnover by ADAMTS proteases during embryogenesis. Matrix Biology 35, 34-41, doi:10.1016/j.matbio.2014.01.005 (2014).
    48 Wight, T. N. Provisional matrix: A role for versican and hyaluronan. Matrix biology : journal of the International Society for Matrix Biology 60-61, 38-56, doi:10.1016/j.matbio.2016.12.001 (2017).
    49 Touab, M., Villena, J., Barranco, C., Arumí-Uría, M. & Bassols, A. Versican Is Differentially Expressed in Human Melanoma and May Play a Role in Tumor Development. The American Journal of Pathology 160, 549-557, doi:10.1016/S0002-9440(10)64874-2 (2002).
    50 Voutilainen, K., Anttila, M., Sillanpää, S., Tammi, R., Tammi, M., Saarikoski, S. & Kosma, V.-M. Versican in epithelial ovarian cancer: Relation to hyaluronan, clinicopathologic factors and prognosis. International Journal of Cancer 107, 359-364, doi:10.1002/ijc.11423 (2003).
    51 Pirinen, R., Leinonen, T., Böhm, J., Johansson, R., Ropponen, K., Kumpulainen, E. & Kosma, V.-M. Versican in nonsmall cell lung cancer: relation to hyaluronan, clinicopathologic factors, and prognosis. Human Pathology 36, 44-50, doi:10.1016/j.humpath.2004.10.010 (2005).
    52 Zimmermann, D. R., Dours-Zimmermann, M. T., Schubert, M. & Bruckner-Tuderman, L. Versican is expressed in the proliferating zone in the epidermis and in association with the elastic network of the dermis. The Journal of Cell Biology 124, 817, doi:10.1083/jcb.124.5.817 (1994).
    53 Asano, K., Nelson, C. M., Nandadasa, S., Aramaki-Hattori, N., Lindner, D. J., Alban, T., Inagaki, J., Ohtsuki, T., Oohashi, T., Apte, S. S. & Hirohata, S. Stromal Versican Regulates Tumor Growth by Promoting Angiogenesis. Scientific Reports 7, 17225-17225, doi:10.1038/s41598-017-17613-6 (2017).
    54 Dutt, S., Kléber, M., Matasci, M., Sommer, L. & Zimmermann, D. R. Versican V0 and V1 guide migratory neural crest cells. The Journal of biological chemistry 281, 12123-12131, doi:10.1074/jbc.m510834200 (2006).
    55 Kim, S., Takahashi, H., Lin, W. W., Descargues, P., Grivennikov, S., Kim, Y., Luo, J. L. & Karin, M. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457, 102-106, doi:10.1038/nature07623 (2009).
    56 Shen, M. & Kang, Y. Complex interplay between tumor microenvironment and cancer therapy. Frontiers of Medicine 12, 426-439, doi:10.1007/s11684-018-0663-7 (2018).
    57 Yang, L., Wang, F., Wang, L., Huang, L., Wang, J., Zhang, B. & Zhang, Y. CD163+ tumor-associated macrophage is a prognostic biomarker and is associated with therapeutic effect on malignant pleural effusion of lung cancer patients. Oncotarget 6, 10592-10603, doi:10.18632/oncotarget.3547 (2015).
    58 Nielsen, S. R. & Schmid, M. C. Macrophages as Key Drivers of Cancer Progression and Metastasis. Mediators of inflammation 2017, 9624760-9624760, doi:10.1155/2017/9624760 (2017).
    59 Räihä, M. R. & Puolakkainen, P. A. Tumor-associated macrophages (TAMs) as biomarkers for gastric cancer: A review. Chronic diseases and translational medicine 4, 156-163, doi:10.1016/j.cdtm.2018.07.001 (2018).
    60 Yang, L., Zhang, Y. J. J. o. H. & Oncology. Tumor-associated macrophages: from basic research to clinical application. Journal of Hemotology and Oncology 10, 58, doi:10.1186/s13045-017-0430-2 (2017).
    61 Shang, G.-S., Liu, L. & Qin, Y.-W. IL-6 and TNF-α promote metastasis of lung cancer by inducing epithelial-mesenchymal transition. Oncology Letters 13, 4657-4660, doi:10.3892/ol.2017.6048 (2017).
    62 Wang, X. & Lin, Y. Tumor necrosis factor and cancer, buddies or foes? Acta pharmacologica Sinica 29, 1275-1288, doi:10.1111/j.1745-7254.2008.00889.x (2008).
    63 Korneev, K. V., Atretkhany, K.-S. N., Drutskaya, M. S., Grivennikov, S. I., Kuprash, D. V. & Nedospasov, S. A. TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis. Cytokine 89, 127-135, doi:10.1016/j.cyto.2016.01.021 (2017).
    64 Tomita, Y., Yang, X., Ishida, Y., Nemoto-Sasaki, Y., Kondo, T., Oda, M., Watanabe, G., Chaldakov, G. N., Fujii, C. & Mukaida, N. Spontaneous regression of lung metastasis in the absence of tumor necrosis factor receptor p55. International Journal of Cancer 112, 927-933, doi:10.1002/ijc.20493 (2004).
    65 Sheng, Y., Li, F. & Qin, Z. TNF Receptor 2 Makes Tumor Necrosis Factor a Friend of Tumors. Frontiers in Immunology 9, 1170, doi:10.3389/fimmu.2018.01170 (2018).
    66 Mori, R., Ikematsu, K., Kitaguchi, T., Kim, S. E., Okamoto, M., Chiba, T., Miyawaki, A., Shimokawa, I. & Tsuboi, T. Release of TNF-alpha from macrophages is mediated by small GTPase Rab37. European Journal of Immunology 41, 3230-3239, doi:10.1002/eji.201141640 (2011).
    67 Akira, S. & Takeda, K. Toll-like receptor signalling. Nature Reviews Immunology 4, 499-511, doi:10.1038/nri1391 (2004).
    68 Gay, N. J., Symmons, M. F., Gangloff, M. & Bryant, C. E. Assembly and localization of Toll-like receptor signalling complexes. Nature Reviews Immunology 14, 546, doi:10.1038/nri3713 (2014).
    69 Murphy, K., Travers, P., Walport, M. & Janeway, C. Janeway's immunobiology. 9th edn, (Garland Science, 2018).
    70 Liu, H., Sidiropoulos, P., Song, G., Pagliari, L. J., Birrer, M. J., Stein, B., Anrather, J. & Pope, R. M. TNF-α Gene Expression in Macrophages: Regulation by NF-κB Is Independent of c-Jun or C/EBPβ. Journal of Immmunology 164, 4277-4285, doi:10.4049/jimmunol.164.8.4277 %J (2000).
    71 Falvo, J. V., Tsytsykova, A. V. & Goldfeld, A. E. Transcriptional control of the TNF gene. Current Directions in Autoimmunity 11, 27-60, doi:10.1159/000289196 (2010).
    72 Liang, M. D., Zhang, Y., McDevit, D., Marecki, S. & Nikolajczyk, B. S. The interleukin-1beta gene is transcribed from a poised promoter architecture in monocytes. The Journal of biological chemistry 281, 9227-9237, doi:10.1074/jbc.M510700200 (2006).
    73 Marecki, S., Riendeau, C. J., Liang, M. D. & Fenton, M. J. PU.1 and Multiple IFN Regulatory Factor Proteins Synergize to Mediate Transcriptional Activation of the Human IL-1β Gene. Journal of Immmunology 166, 6829-6838, doi:10.4049/jimmunol.166.11.6829 %J (2001).
    74 Pylypenko, O., Hammich, H., Yu, I. M. & Houdusse, A. Rab GTPases and their interacting protein partners: Structural insights into Rab functional diversity. Small GTPases 9, 22-48, doi:10.1080/21541248.2017.1336191 (2017).
    75 Cho, S. H., Kuo, I. Y., Lu, P. F., Tzeng, H. T., Lai, W. W., Su, W. C. & Wang, Y. C. Rab37 mediates exocytosis of secreted frizzled-related protein 1 to inhibit Wnt signaling and thus suppress lung cancer stemness. Cell Death & Disease 9, 868, doi:10.1038/s41419-018-0915-0 (2018).
    76 Tzeng, H.-T. & Wang, Y.-C. Rab-mediated vesicle trafficking in cancer. Journal of biomedical science 23, 70-70, doi:10.1186/s12929-016-0287-7 (2016).
    77 Luo, M.-L., Gong, C., Chen, C.-H., Hu, H., Huang, P., Zheng, M., Yao, Y., Wei, S., Wulf, G., Lieberman, J., Zhou, Xiao Z., Song, E. & Lu, Kun P. The Rab2A GTPase Promotes Breast Cancer Stem Cells and Tumorigenesis via Erk Signaling Activation. Cell Reports 11, 111-124, doi:10.1016/j.celrep.2015.03.002 (2015).
    78 Caswell, P. T., Spence, H. J., Parsons, M., White, D. P., Clark, K., Cheng, K. W., Mills, G. B., Humphries, M. J., Messent, A. J., Anderson, K. I., McCaffrey, M. W., Ozanne, B. W. & Norman, J. C. Rab25 associates with alpha5beta1 integrin to promote invasive migration in 3D microenvironments. Developmental Cell 13, 496-510, doi:10.1016/j.devcel.2007.08.012 (2007).
    79 Wang, T., Gilkes, D. M., Takano, N., Xiang, L., Luo, W., Bishop, C. J., Chaturvedi, P., Green, J. J. & Semenza, G. L. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proceedings of the National Academy of Sciences of the United States of America 111, E3234-3242, doi:10.1073/pnas.1410041111 (2014).
    80 Bravo-Cordero, J. J., Marrero-Diaz, R., Megias, D., Genis, L., Garcia-Grande, A., Garcia, M. A., Arroyo, A. G. & Montoya, M. C. MT1-MMP proinvasive activity is regulated by a novel Rab8-dependent exocytic pathway. EMBO Journal 26, 1499-1510, doi:10.1038/sj.emboj.7601606 (2007).
    81 Hendrix, A., Maynard, D., Pauwels, P., Braems, G., Denys, H., Van den Broecke, R., Lambert, J., Van Belle, S., Cocquyt, V., Gespach, C., Bracke, M., Seabra, M. C., Gahl, W. A., De Wever, O. & Westbroek, W. Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis. Journal of the National Cancer Institue 102, 866-880, doi:10.1093/jnci/djq153 (2010).
    82 Hou, Q., Wu, Y. H., Grabsch, H., Zhu, Y., Leong, S. H., Ganesan, K., Cross, D., Tan, L. K., Tao, J., Gopalakrishnan, V., Tang, B. L., Kon, O. L. & Tan, P. Integrative Genomics Identifies RAB23 as an Invasion Mediator Gene in Diffuse-Type Gastric Cancer. Cancer Research 68, 4623 (2008).
    83 Pellinen, T., Arjonen, A., Vuoriluoto, K., Kallio, K., Fransen, J. A. & Ivaska, J. Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of beta1-integrins. Journal of Cell Biology 173, 767-780, doi:10.1083/jcb.200509019 (2006).
    84 Wheeler, D. B., Zoncu, R., Root, D. E., Sabatini, D. M. & Sawyers, C. L. Identification of an oncogenic RAB protein. Science 350, 211-217, doi:10.1126/science.aaa4903 (2015).
    85 Yang, J., Liu, W., Lu, X., Fu, Y., Li, L. & Luo, Y. High expression of small GTPase Rab3D promotes cancer progression and metastasis. Oncotarget 6, 11125-11138, doi:10.18632/oncotarget.3575 (2015).
    86 Yoon, S. O., Shin, S. & Mercurio, A. M. Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the alpha6beta4 integrin. Cancer Research 65, 2761-2769, doi:10.1158/0008-5472.CAN-04-4122 (2005).
    87 Tsai, C. H., Cheng, H. C., Wang, Y. S., Lin, P., Jen, J., Kuo, I. Y., Chang, Y. H., Liao, P. C., Chen, R. H., Yuan, W. C., Hsu, H. S., Yang, M. H., Hsu, M. T., Wu, C. Y. & Wang, Y. C. Small GTPase Rab37 targets tissue inhibitor of metalloproteinase 1 for exocytosis and thus suppresses tumour metastasis. Nature Communications 5, 4804, doi:10.1038/ncomms5804 (2014).
    88 Tzeng, H. T., Su, C. C., Chang, C. P., Lai, W. W., Su, W. C. & Wang, Y. C. Rab37 in lung cancer mediates exocytosis of soluble ST2 and thus skews macrophages toward tumor-suppressing phenotype. International Journal of Cancer, doi:10.1002/ijc.31569 (2018).
    89 Wang, Y.-C., Tzeng, H.-T., Tsai, C.-H., Yen, Y.-T., Cheng, H.-C., Chen, Y.-C., Pu, S.-W., Wang, Y.-S., Shan, Y.-S., Tseng, Y.-L., Su, W.-C., Lai, W.-W. & Wu, L.-W. Dysregulation of Rab37-Mediated Cross-talk between Cancer Cells and Endothelial Cells via Thrombospondin-1 Promotes Tumor Neovasculature and Metastasis. Clinical Cancer Research (2016).
    90 Wu, C.-Y., Tseng, R.-C., Hsu, H.-S., Wang, Y.-C. & Hsu, M.-T. Frequent down-regulation of hRAB37 in metastatic tumor by genetic and epigenetic mechanisms in lung cancer. Lung Cancer 63, 360-367, doi:10.1016/j.lungcan.2008.06.014 (2009).
    91 Li, Y., Yang, X., Du, X., Lei, Y., He, Q., Hong, X., Tang, X., Wen, X., Zhang, P., Sun, Y., Zhang, J., Wang, Y., Ma, J. & Liu, N. RAB37 Hypermethylation Regulates Metastasis and Resistance to Docetaxel-Based Induction Chemotherapy in Nasopharyngeal Carcinoma. Clinical Cancer Research 24, 6495-6508, doi:10.1158/1078-0432.CCR-18-0532 %J (2018).
    92 Tzeng, H.-T., Li, T.-H., Tang, Y.-A., Tsai, C.-H., Frank Lu, P.-J., Lai, W.-W., Chiang, C.-W. & Wang, Y.-C. Phosphorylation of Rab37 by protein kinase C alpha inhibits the exocytosis function and metastasis suppression activity of Rab37. Oncotarget 8, 108556-108570, doi:10.18632/oncotarget.20998 (2017).
    93 Morrison, D. K. MAP kinase pathways. Cold Spring Harbor perspectives in biology 4, a011254, doi:10.1101/cshperspect.a011254 (2012).
    94 Wang, W., Xu, G.-L., Jia, W.-D., Ma, J.-L., Li, J.-S., Ge, Y.-S., Ren, W.-H., Yu, J.-H. & Liu, W.-B. Ligation of TLR2 by Versican: A Link Between Inflammation and Metastasis. Archives of Medical Research 40, 321-323, doi:10.1016/j.arcmed.2009.04.005 (2009).
    95 Hartley, G., Regan, D., Guth, A. & Dow, S. Regulation of PD-L1 expression on murine tumor-associated monocytes and macrophages by locally produced TNF-α. Cancer immunology, immunotherapy : CII 66, 523-535, doi:10.1007/s00262-017-1955-5 (2017).
    96 Lord, M. S. & Whitelock, J. M. Recombinant production of proteoglycans and their bioactive domains. FEBS Journal 280, 2490-2510, doi:10.1111/febs.12197 (2013).
    97 Scheibner, K. A., Lutz, M. A., Boodoo, S., Fenton, M. J., Powell, J. D. & Horton, M. R. Hyaluronan Fragments Act as an Endogenous Danger Signal by Engaging TLR2. Journal of Immunology 177, 1272-1281, doi:10.4049/jimmunol.177.2.1272 %J (2006).
    98 Wang, W., Jia, W.-D., Hu, B. & Pan, Y.-Y. RAB10 overexpression promotes tumor growth and indicates poor prognosis of hepatocellular carcinoma. Oncotarget 8, 26434-26447, doi:10.18632/oncotarget.15507 (2017).
    99 Lim, M. X., Png, C. W., Tay, C. Y. B., Teo, J. D. W., Jiao, H., Lehming, N., Tan, K. S. W. & Zhang, Y. Differential regulation of proinflammatory cytokine expression by mitogen-activated protein kinases in macrophages in response to intestinal parasite infection. Infection and immunity 82, 4789-4801, doi:10.1128/IAI.02279-14 (2014).
    100 Christopher, T., Helmut, H. & Matthias, G. The Role of Mammalian MAPK Signaling in Regulation of Cytokine mRNA Stability and Translation. Journal of Interferon & Cytokine Research 34, 220-232, doi:10.1089/jir.2013.0146 (2014).
    101 Winzen, R., Kracht, M., Ritter, B., Wilhelm, A., Chen, C. Y., Shyu, A. B., Müller, M., Gaestel, M., Resch, K. & Holtmann, H. The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. The EMBO journal 18, 4969-4980, doi:10.1093/emboj/18.18.4969 (1999).
    102 Nyati, K. K., Masuda, K., Dubey, P., Zaman, M. M.-U. & Kishimoto, T. NF-κB and MAPK signaling pathways regulate the IL6 mRNA stability under TLR4 by regulating the expression and degradation of Arid5a. Nucleic Acids Research 196, 59.55-59.55 (2016).
    103 Bhattacharyya, S., Gutti, U., Mercado, J., Moore, C., Pollard, H. B. & Biswas, R. MAPK signaling pathways regulate IL-8 mRNA stability and IL-8 protein expression in cystic fibrosis lung epithelial cell lines. American journal of physiology. Lung cellular and molecular physiology 300, L81-L87, doi:10.1152/ajplung.00051.2010 (2011).
    104 Jijon, H. B., Panenka, W. J., Madsen, K. L. & Parsons, H. G. MAP kinases contribute to IL-8 secretion by intestinal epithelial cells via a posttranscriptional mechanism. American Journal of Physiology 283, C31-C41, doi:10.1152/ajpcell.00113.2001 (2002).
    105 Anderson, P., Tiedje, C., Ronkina, N., Tehrani, M., Dhamija, S., Laass, K., Holtmann, H., Kotlyarov, A. & Gaestel, M. The p38/MK2-Driven Exchange between Tristetraprolin and HuR Regulates AU–Rich Element–Dependent Translation. PLoS Genetics 8, doi:10.1371/journal.pgen.1002977 (2012).
    106 Cheng, K., Agarwal, R., Mitra, S. & Mills, G. Rab25 Small GTPase Mediates Secretion of Tumor Necrosis Factor Receptor Superfamily Member 11b (osteoprotegerin) Protecting Cancer Cells from Effects of TRAIL. Journal of genetic syndromes & gene therapy 4, 1000153, doi:10.4172/2157-7412.1000153 (2013).
    107 Cheng, K. W., Lahad, J. P., Kuo, W.-l., Lapuk, A., Yamada, K., Auersperg, N., Liu, J., Smith-McCune, K., Lu, K. H., Fishman, D., Gray, J. W. & Mills, G. B. The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nature Medicine 10, 1251-1256, doi:10.1038/nm1125 (2004).
    108 Cheng, K. W., Agarwal, R., Mitra, S., Lee, J.-S., Carey, M., Gray, J. W. & Mills, G. B. Rab25 increases cellular ATP and glycogen stores protecting cancer cells from bioenergetic stress. EMBO molecular medicine 4, 125-141, doi:10.1002/emmm.201100193 (2012).
    109 Yang, X., Zhang, Y., Li, S., Liu, C., Jin, Z., Wang, Y., Ren, F. & Chang, Z. Rab21 attenuates EGF-mediated MAPK signaling through enhancing EGFR internalization and degradation. Biochemical and Biophysical Research Communications 421, 651-657, doi:10.1016/j.bbrc.2012.04.049 (2012).

    無法下載圖示 校內:2024-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE