| 研究生: |
許智偉 Hsu, Chih-Wei |
|---|---|
| 論文名稱: |
介電泳場流分離法對紅血球特性分析之應用 Application of Blood Cells Characteristics Study by DEP Field-Flow Fractionation |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 血球 、介電泳力 、介電泳場流分離法 、粒子追蹤測速法 |
| 外文關鍵詞: | dielectrophoretic, DEP-FFF, Blood cells, nonuniform electric field |
| 相關次數: | 點閱:70 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
介電泳場流分離法(DEP Field-Flow Fractionation , DEP-FFF)是一種結合介電泳力與流體力兩種力的細胞分離法,使不同介電性質粒子受介電泳力作用漂浮到流場中不同高度,進而利用流場內速度不同而分離細胞。本研究主要是以微機電製程加工技術(MEMS fabrication)於玻璃基底上製作指叉型電極(Interdigitated microelectrodes),並利用其不均勻電場(Nonuniform electric field),使粒子受負介電泳力作用而漂浮。根據介電泳力與其粒子所受重力平衡條件,利用解析方法推導出粒子漂浮高度近似解,同時使用數值模擬方法計算出粒子漂浮高度,與解析近似解相比較。
本研究觀測的生物粒子具有滲透壓的性質,實驗的流體必須使用“等張溶液”,不同的等張溶液,導電性介電性也有所不同,將探討等張溶液對於粒子聚焦與粒子漂浮高度的影響與一些實驗問題的解決方法。
In this study, MEMS-fabricated interdigitated microelectrodes were used to generate the non-uniform electric fields. So the particles floating by the negative DEP force. By taking advantage of dielectrophoretic (DEP) and hydrodynamic forces, DEP Field-Flow Fractionation (FFF) technique is firstly used DEP force to levitate particles to different heights according to their different dielectric properties. Based on the parabolic velocity profile of channel flow field, particles could be separated by height or velocity difference.
This study used RBCs. RBCs will affect by osmotic pressure. So the fluid must be used "Isotonic solution". Isotonic solution is an important experimental parameter. If the Isotonic solution is different, they will have different electrical conductivity and dielectric. To investigate the impact of difference isotonic solution for blood cells focusing and levitation heights. And solve some experimental problems.
[1] R. Feyman, “There is plenty of room at the bottom”, http://www.zyvex.com/ nanotech/feynman.html, 1959
[2] A. Manz, N. Graber, H. M. Winder, “Miniaturized total chemical analysis system a novel concept for chemical sensing, Sensors and Actuators”, B1, 244–248, 1990
[3] S. J. Lee, S. Y. Lee, “Micro total analysis system in biotechnology, Microboil. Biotechnol.”, Vol. 64, 289–299, 2004
[4] H. A. Pohl, “The motion and precipition of suspensoids in divergent electric fields, J. Appl. Phys.”, Vol. 22, 869–871, 1951
[5] H. A. Pohl, “Some effects of nonuniform fields on dielectrics., J. Appl. Phys.”, Vol. 29, 1182–1188, 1958
[6] H. A. Pohl, Joe S. Crane, “Dielectrophoresis of cells., J. Biophy., Vol. 11”, 711-727, 1971
[7] M. Mischel, A. Voss, H. A. Pohl, “Cellular spin resonance in rotating electric fields, J. Biol. Phys.”, Vol. 10, 223-226, 1982
[8] J. S. Batchelder, “Dielectrophoretic manipulator, Rev. Sci. Instrum.”, Vol. 54, 300-302, 1983
[9] S. Masuda, M. Washizu, “I. Kawabata, Movement of blood cells in liquid by nonuniform traveling field”, IEEE Transactions on Industry Applications, Vol. 24, No. 2, 217-223, 1988.
[10] S. Elder, W. Gathright, B. Levy, W. Tu, “AC electrokinetics and nanotechnology”
[11] P. Gascoyne, C. Mahidol, M. Ruchirawat, J. Satayavivad, P. Watcharasitb, F. F. Beckera, “Microsample preparation by dielectrophoresis: isolation of malaria”, Lab Chip, Vol. 2, 70–75, 2002
[12] G. Fuhr, R. Hagedorn, T. Muller, “Linear motion of dielectric particles and living cells in microfabricated structures induced by traveling electric fields”, IEEE MEMS, 259-264, 1991
[13] X. B. Wang, Y. Huang, J. P. H. Burt, G. H. Mark, R. Pethig, “Selective dielectrophoretic confinement of bioparticles in potential energy wells”, J. Phys. D: Appl. Phys., Vol. 26, 1278-1285, 1993
[14] G. Peter, J. V. Vykoukal, “Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments”, IEEE, Vol. 92, NO. 1, 22-42, 2004
[15] J. M. Davis, J. C. Giddings, “Feasibility study of dielectric field-flow- fractionation, Sepa. Sci. and Tech”, Vol. 21, 969 –989, 1986
[16] J. C. Giddings, “Field-flow fractionation of macromolecules, J. Chromatogr”, Vol.470, 327–335, 1989
[17] G. H. Mark, R. Pethig, “Dielectrophoretic separation of cells: continuous separation, Biotech. Bioeng.”, Vol. 45, 337-343, 1995
[18] M. Torsten, F. Stefan, S. Thomas, K. Ludwig, “Hartmut Junga, Gtinter Fuhr, High frequency electric fields for trapping of viruses, Biotech. Techniq”, Vol. 10, No.4, 221-226, 1996
[19] R. Pethig, G. H. Markx, “Applications of dielectrophoresis in biotechnology, Tibtech.”, Vol. 15, 426-432, 1997
[20] Y. Huang, X. B. Wang, F. F. Becker, Peter R. C. Gascoyne, “Introducing dielectrophoresis as a new force field for field-flow fractionation, biophysical journal”, Vol. 73, 1118-1129, 1997
[21] X. B. Wang, J. Vykoukal, F. F. Becker, R. C. G. Peter, “Separation of polystyrene microbeads using dielectrophoretic/ gravitational for field-flow fractionation, biophysical journal”, Vol. 74, 2689-2701, 1998
[22] G. H. Markx, R. Pethig, J. Rousselet, “The dielectrophoretic levitation of latex beads, with reference to field-flow fractionation, J. Phys. D: Appl. Phys.”, Vol. 30, 2470-2477, 1997
[23] X. Wang, X. B. Wang, F. F. Becker, R. C. Peter. Gascoyne, “A throretical method of electrical field analysis for dielectrophoretic electrode arrays using Green’s theorem”, J. Phys. D: Appl. Phys., Vol. 29, 1649-1660, 1996
[24] A. Ramos, H. Morgan, N. G. Green and A. Castellanos, “AC Electric-Field-Induced fluid flow in microelectrodes, J Colloid Interface Sci.”, 217, 420, 1999
[25] H. Morgan, A. G. Izquierdo, D. Bakewell, G. G. Nicolas, A. Ramos, “The dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays: analytical solution using Fourier series, J. Phys. D: Appl. Phys.”, Vol. 34, 1553-1561, 2001
[26] N. G. Green, A. Ramos, A. González, H. Morgan and A. Castellans, “Fluid flow induced by nonuniform ac electrolytes on microelectrodes. III. Observation of streamlines and numerical simulatio, Phys. Rev. E”, 66, 026305, 2002
[27] J. J. Feng, S. Krishnamoorthy, Z. J. Chen, V. B. Makhijani, Numerical and analytical studies of ac electric field in dielectrophoretic electrode arrays, NanoTech., Vol. 2, 85-88, 2002
[28] N. G. Green, A. Ramos, H. Morgan, “Numerical solution of the dielectrophoretic and traveling wave forces for interdigitated electrode arrays using the finite element method, J. Electrostatics”, Vol. 56, 235-254, 2002
[29] D. E. Chang, S. Loire, I. Mezic, “Closed-form solutions in the electrical field analysis for dielectrophoretic and travelling wave interdigitated electrode arrays, J. Phys. D: Appl. Phys.”, Vol. 36, 3073-3078, 2003
[30] N. Piacentini, et al., “Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics”, 2011. 5(3)
[31] 廖志峰,“Separating Plasma and Blood Cells by Dielectrophoresis in Micro-Fluidic Chip”,碩士論文,成大航太,2007
[32] F. Ch. Mokken, M. Kedaria, Ch. P. Henny, M. R. Hardeman, A. W. Gelb, “The clinical importance of erythrocyte deformability,a hemorrheological parameter”, Ann Hematol, 64, 113-122, 1991
[33] I. N. Sneddon, “Mixed boundary value problems in potential theory”, page 165, New York: Wiley, 1966
[34] T. B. Jones, “Electromechanics of particles, New York Cambridge University Press”, 1995