簡易檢索 / 詳目顯示

研究生: 張育瑄
Chang, Yu-Hsuan
論文名稱: 局部熱致電雙層極化所誘發之交流電荷動力流動
AC Electrokinetic Flows Due to Double Layer Polarization Induced by Local Joule Heating
指導教授: 魏憲鴻
Wei, Hsien-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 166
中文關鍵詞: 焦耳熱交流電熱流電雙層水平充電熱致電雙層充電
外文關鍵詞: Joule heating, AC electrothermal flow (ACET), electrical double layer, tangential charging, heated double layer charging
相關次數: 點閱:51下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究起源於高導電度緩衝溶液之生物晶片快速檢測的需求,其中一種檢測方法為施加交流電場以實現快速捕捉樣品或流動效應,來克服擴散作用在輸送上的不足。研究著重於焦耳熱產生的交流電熱流(AC Electrothermal Flow, ACET),這是高導電度緩衝溶液中最普遍的作用。
    本研究使用T字型ITO電極以多種溶液導電度來檢視ACET,我發現這種流動主要是由電極的局部焦耳熱增強而在電極尖角附近或沿著電極邊緣流動。經典ACET理論並不能完全根據誘導空間電荷理論來解釋所觀察到的流態,且測量到的流速並不總是遵循經典理論所預測的電壓四次方,因此,我提出一個基於熱致電雙層極化的全新理論來解釋我的實驗發現。
    在低導電度溶液(1-10µS/cm)的研究(第四章)中,我觀察到ACET通常發生於電極表面且頻率範圍為500k-10MHz。頻率5M-10MHz時於電極尖角處形成局部匯流,在500k-1MHz時沿著電極短邊的邊緣形成小漩渦流動,後者通常會噴至電極外且有時與電極內的逆流共存。令人意外地,這些流動的特徵非常不同,前兩種流動的流速U幾乎不隨電壓V改變,而逆流則表現U∝V⁴,這意味著它們是由不同ACET機制所驅動。
    於中導電度溶液( ~120µS/cm),我觀察到於10MHz時在尖角處產生局部匯流,這是與低導電度相同的流態,但當頻率下降至5MHz時,我發現於電極短邊邊緣出現短距離的噴流,更低頻500k-1MHz時,快速的噴流沿著電極長邊邊緣流出,不同於低導電度的是,電極內沒有發生逆流。前兩種流態的流速U幾乎與電壓V無關,而噴流則遵循U∝V²。
    對於高導電度溶液(2000-73000µS/cm),這些流動特性(參閱第五章)與中低導電度溶液有很大的不同,流態基本上呈現大漩渦對,這是由於當溶液導電度提高,局部焦耳熱效應增強所致,因此在電極尖角附近的ACET流動現象擴大,我也觀察到這流速隨著導電度提高而減慢,對應的電壓關係從U∝V⁴下降至U∝V²,這些流動特性與經典ACET所預測的U∝σV⁴相抵觸。
    經典ACET理論無法解釋在這些溶液中所觀察到不同的流動模式,因此,我們於第六章提出了另一種觀點來解釋這三種情況之間的差異。我推測電極尖角處的局部發散電場使尖角處產生局部熱點,導致鄰近電極尖角的水平充電比遠離尖角的垂直充電還更容易發生,而進入尖角的水平電流較熱,流出尖角的電流較冷,這兩者之間的不平衡會產生電力從而形成電極內的局部匯流或向電極外的噴流,這種機制解釋了實驗上觀察到的多種流態。
    為了解釋這些偏離U∝V⁴的現象,我提出「熱致電雙層充電理論」,進一步考慮了焦耳熱對電雙層電容與溶液電阻的影響。對於後者,水平方向的充電以表面電導來表示,包含擴散層與靜止層的貢獻,這兩者分別在高和低導電度溶液下主導作用。由於電雙層電容隨溶液導電度σ變化,水平電流與電雙層競爭加熱效應會導致所得電荷密度隨施加電壓V不同次方數而變化,從而解釋流速U對V的各種冪律依賴性,這也部份解釋了為什麼實驗上U在高導電度溶液中不隨σ增長。
    本研究表明了局部焦耳熱及水平充電為決定ACET表徵的重要關鍵,因此,ACET特徵可能對於電極幾何形狀非常敏感,這為生物晶片應用中如何基於ACET設計更有效的微裝置開闢一個新的途徑。

    SUMMARY

    This thesis originated from the detection of biosensing chip under highly conductive buffer solution, which caused by the AC electrothermal flow (ACET) driven by the alternating current field. The current theory about ACET is based on the ''induced space charge theory'' proposed by Ramos et al. But we find that the actual experiment doesn’t completely follow the behavior of the classical theory, so we conducted a series of experiments to clarify the ACET mechanism. Under different conductivity solutions, I found that the flow patterns and the dependence of flow speed U on voltage V are different from the classical theory. Research on these problems, I consider that the local electric field on the electrode corners makes the corners hotter, which forms tangential charging and jetting. The tangential charging makes the flow direction observed in the experiment different from the classical theory. Regarding the deviation from U∝V⁴ based on the classical theory, I develop the ''heated double layer charging theory'', taking into account the Joule heating on electric double-layer capacitors and bulk resistance. The heating effect of the competition between these two will cause the flow speed to vary with different powers of the voltage, which explains the various effects of the dependence of U on V. These findings not only reverse the classic ACET theory, but also provide a reference for academic research.

    第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 1 1.3 研究動機 3 第二章 交流電動基本原理 7 2.1 電雙層(Electrical Double Layer) 7 2.2 交流電熱流(AC Electrothermal Flow, ACET) 9 2.3 交流電滲流(AC Electro-osmosis, ACEO) 13 2.4 介電泳(Dielectrophoresis, DEP) 14 第三章 實驗操作及相關細節 20 3.1 實驗裝置 20 3.1.1 ITO電極製程 20 3.1.2 PDMS微流道製程 20 3.1.3 PDMS微流道與外部管線組裝 20 3.1.4 ITO電極與PDMS微流道組裝 21 3.2 實驗步驟 22 3.3 實驗相關細節 22 3.4 如何選擇量測的粒子 23 3.5 流速測量方式 24 第四章 在交流電場下觀測中低導電度溶液的流態及流速 27 4.1 純水在交流電場下的流動 27 4.1.1 工作溶液 27 4.1.2 流態分析 28 4.1.3 流速分析 35 4.2 10倍純水導電度之食鹽水在交流電場下的流動 37 4.2.1 工作溶液 37 4.2.2 流態分析 38 4.2.3 流速分析 45 4.3 100倍純水導電度之食鹽水在交流電場下的流動 47 4.3.1 工作溶液 47 4.3.2 流態分析 48 4.3.3 流速分析 55 4.4 結論 57 第五章 在交流電場下觀測高導電度溶液的流態及流速 66 5.1 1800倍純水導電度之食鹽水在交流電場下的流動 66 5.1.1 工作溶液 66 5.1.2 流態分析 67 5.1.3 流速分析 73 5.2 4800倍純水導電度之食鹽水在交流電場下的流動 74 5.2.1 工作溶液 74 5.2.2 流態分析 75 5.2.3 流速分析 81 5.3 7000倍純水導電度之食鹽水在交流電場下的流動 82 5.3.1 工作溶液 82 5.3.2 流態分析 83 5.3.3 流速分析 88 5.4 15000倍純水導電度之食鹽水在交流電場下的流動 89 5.4.1 工作溶液 89 5.4.2 流態分析 90 5.4.3 流速分析 94 5.5 62000倍純水導電度之食鹽水在交流電場下的流動 95 5.5.1 工作溶液 95 5.5.2 流態分析 96 5.5.3 流速分析 97 5.6 結論 98 第六章 分析交流電熱流機制 108 6.1 實驗數據分析 108 6.2 審視ACET作用機制 110 6.3 熱致電雙層充電理論 111 6.3.1 模型A:水平充電橫跨局部尺度 112 6.3.2 模型B:水平充電橫跨電極間距 115 6.3.3 模型C:垂直充電橫跨電極間距 117 6.3.4 模型D:水平充電橫跨電雙層 120 6.3.5 模型E:垂直充電橫跨電雙層 121 6.3.6 模型F:以表面電導表示水平與垂直充電 122 6.3.7 ACET理論模型結論 126 6.4 結論 127 第七章 結論與未來工作 139 參考文獻 142 附錄A ITO電極製程 145 A.1 電極之光罩設計 145 A.2 ITO電極之光微影製程 145 A.2.1 ITO晶片清洗 145 A.2.2 光阻塗佈 146 A.2.3 軟烤 146 A.2.4 曝光 147 A.2.5 顯影 147 A.3 蝕刻 148 A.4 去光阻 148 附錄B PDMS微流道製程 152 B.1 微流道之光罩設計 152 B.2 微流道晶片之光微影製程 152 B.2.1 晶圓清洗 152 B.2.2 光阻塗佈 153 B.2.3 軟烤 153 B.2.4 曝光 154 B.2.5 曝後烤 154 B.2.6 顯影 154 B.2.7 硬烤 155 B.3 微流道模型製作 155 附錄C 影像拍攝與數據處理 161 C.1 影像擷取參數設定 161 C.1.1 曝光時間 161 C.1.2 觀測視窗大小 161 C.1.3 影像整體視覺亮度(Visual Gain) 161 C.2 影像擷取時間設定 162 C.3 螢光濾片的選擇及使用 162 附錄D 儀器設備使用 165

    Brian, J. K. Micro- and Nanoscale Fluid Mechanics Transport in Microfluidic Devices. Cambridge University, USA (2010).
    Chang, H. C., Lastochkin, D. Zhou, R., Wang, P. & Ben, Y. Electrokinetic micropump and micromixer design based on ac faradaic polarization. J. Appl. Phys., 96, 1730 (2004).
    Gagnon, Z. R., & Chang, H. C. Electrothermal ac electro-osmosis. Appl. Phys. Lett., 94, 024101 (2009).
    Green, N. G., Ramos, A., González, A., Morgan, H. & Castellanos, A. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation. Phys. Rev. E, 66, 026305 (2002).
    Jackson, J. D. Classical Electrodynamics. Wiley, New York, USA (1998).
    Kauffmann, P., Loire, S., Meinhart, C. D. & Mezic, I. A theoretical and experimental study of ac electrothermal flows. Journal of Physics D: Applied Physics, 45, 185301 (2012).
    Kilic, M. S., Bazant, M. Z. & Ajdari, A. Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys. Rev. E, 75, 021502 (2007).
    Koklu, A., Beskok, A., Helou, A. E. & Raad, P. E. Characterization of Temperature Rise in Alternating Current Elctrothermal Flow Using Thermoreflectance Method. Anal. Chem. 91, 19, 12492-12500 (2019).
    Locascio, L. E., Ross, D. & Gaitan, M. Temperature Measurement in Microfluidic Systems Using a Temperature-Dependent Fluorescent Dye. Anal. Chem., 73, 17, 4117-4123 (2001).
    Morgan, H. & Green, N. G. AC Electrokinetic: Colloids and Nanoparticles. Research Studies: Philadelphia, USA (2003).
    Olesen, L. H., Bruus, H. & Ajdari, A. AC electrokinetic micropumps: The effect of geometrical confinement, Faradaic current injection, and nonlinear surface capacitance. Phys. Rev. E, 73, 056313 (2006).
    Perkin, S., Smith, A. M. & Lee, A. A. The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration. J. Phys. Chem. Lett., 7, 12, 2157-2163 (2016).
    Perkin, S., Smith, A. M., Lee, A. A. & Perez-Martinez, C. S. Scaling Analysis of the Screening Length in Concentrated Electrolytes. Phys. Rev. Lett., 119, 026002 (2017).
    Ramos, A., Morgan, H., Green, N. G. & Castellanos, A. AC electrokinetics: a review of forces in microelectrode structures. Journal of Physics D: Applied Physics, 31, 2338 (1998).
    Ramos, A., Green, N. G., Morgan, H., Castellanos, A. & González, A. Electrothermally induced fluid flow on microeletrodes. Journal of Electrostatics, 53, 71-87 (2001).
    Wong, P. K., Electrothermal Fluid Manipulation of High-Conductivity Samples for Laboratory Automation Applications. JALA, 15, 426-432 (2010).
    Wong, P. K., Lu, Y., Ren, Q., Liu, T., Leung, S. L., Gau, V., Liao, J. & Chan, C. L. Long-range electrothermal fluid motion in microfluidic systems. International Journal of Heat and Mass Transfer, 98, 341-349 (2016).
    Wu, J., Yang, K. & Lian, M. Micropumping of biofluids by alternating current electrothermal effects. Applied Physics Letters, 90, 234103 (2007).
    Yang, K. & Wu, J. Investigation of microflow reversal by ac electrokinetics in orthogonal electrodes for micropump design. Biomicrofluidics, 2, 024101 (2008).
    Yossifon G., Zehavi, M. & Boymelgreen, A. Competition between Induced-Charge Eletro-Osmosis and Electrothermal Effects at Low Frequencies around a Weakly Polarizable Microchannel Corner. Phys. Rev. Appl., 5, 044013 (2016).
    林毓婷,以交流電熱流進行分子捕捉並用於促進FRET生物分子檢測。國立成功大學化工所碩士論文,2020。
    陳君安,環繞於錐形針尖電極的Landau-Squire交流電動流。國立成功大學化工所碩士論文,2020。

    下載圖示 校內:2023-12-31公開
    校外:2023-12-31公開
    QR CODE