| 研究生: |
楊心瑜 Yang, Hsin-Yu |
|---|---|
| 論文名稱: |
臺灣地區空污與過敏性疾病之關聯性:運用高解析時空暴露數據之雙向病例交叉研究 Association Between Air Pollution and Allergic Diseases in Taiwan: A Bidirectional Case-Crossover Study Using High-Resolution Spatiotemporal Exposure Data |
| 指導教授: |
陳必晟
Chen, Pi-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 149 |
| 中文關鍵詞: | 空氣污染物 、過敏性疾病 、環境暴露推估 、病例交叉設計 、環境流行病學 |
| 外文關鍵詞: | Air pollutants, Allergic diseases, Environmental exposure estimation, Case-crossover design, Environmental epidemiology |
| 相關次數: | 點閱:17 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著人們對於空氣污染物的了解程度逐漸增加,對人體所知會造成健康影響的空氣污染物濃度亦逐漸降低。過敏性疾病屬於全球盛行率相當高之疾病,臺灣的海島型氣候使得民眾在過敏的情形上更加普遍與嚴重,其醫療費用之支出及醫療資源之消耗亦為沉重的負擔。過敏性疾病涵蓋範圍廣泛,包含呼吸道、皮膚與眼部等多種表現型態,且常存在交互影響,導致多項疾病併發。現有研究多聚焦於單一或少數常見的過敏性疾病,有助於釐清污染與特定疾病之關聯,但較難以全面評估空氣污染對整體過敏性疾病所造成之相關負擔。
本研究整合環境部空品測站、特殊性工業區空品測站及縣市環保局之空品測站監測數據,基於以空品微型感測器進行分群的智慧空污暴露推估模式,推估各鄉鎮市區的環境暴露濃度,旨在減少空品監測站數量以及空間分布限制所產生之誤差,提升暴露評估之精確度。自全民健康保險研究資料庫2017年至2022年之全人口檔,以ICD-10-CM之疾病診斷碼篩選出過敏性疾病之患者,並進行患者之居住地推估,將其與環境暴露資料進行串聯。本研究採用雙向病例交叉研究設計,運用條件式邏輯斯迴歸計算勝算比,以探討短期空氣污染物暴露對過敏性疾病急性發作風險之影響。
本研究共納入5,603,051名過敏性疾病患者,分析結果顯示女性患者比例較高,春季與冬季為好發季節,而考慮各年齡組別跨度後,0-6歲學齡前兒童之單位年齡佔比最高。過敏性疾病之急性發作風險與當日環境因子關聯最為密切,其中一氧化碳(CO)及二氧化氮(NO2)與急性發作風險呈穩定且顯著的正相關,相對濕度則呈負相關。在單一污染物模式中,多數污染物與急性發作風險呈正向關聯,而於多重污染物模式中,部分污染物之效應強度下降,顯示污染物間存在交互作用。年齡與地區分層分析指出,高齡族群及居住在北部、東部地區之人群對特定污染物較為敏感。此外,本研究亦觀察到明顯之季節性差異,可能反映季節性環境與行為因素之綜合影響。
The health effects of air pollution are increasingly recognized. In Taiwan, allergic diseases are highly prevalent, placing a substantial burden on healthcare. Since allergic diseases often present with interactions and comorbidities, a comprehensive assessment of their relationship with air pollution is crucial for understanding their overall health burden. This study assessed the impact of short-term air pollutant exposure on acute allergic disease exacerbations using 2017–2022 data from the National Health Insurance Research Database. Air pollution exposure was estimated at township levels using a smart clustering-based spatial interpolation model based on air quality microsensors, integrating data from multiple air quality monitoring stations. The residential locations of patients were inferred from healthcare records and subsequently linked to township-level environmental exposure data. A bidirectional case-crossover design with conditional logistic regression was applied to examine the associations between exposure and several allergic health outcomes. The analysis showed a higher proportion of female patients, with spring and winter identified as peak seasons. CO and NO2 were positively associated with exacerbation risk, while relative humidity was negatively associated. Single-pollutant models indicated most pollutants increased risk, whereas multi-pollutant models suggested interactions among pollutants. We also found that older adults and residents in northern and eastern regions were more sensitive to specific pollutants, and significant seasonal differences likely reflected combined environmental and behavioral influences.
Aldakheel, F. M. (2021). Allergic Diseases: A Comprehensive Review on Risk Factors, Immunological Mechanisms, Link with COVID-19, Potential Treatments, and Role of Allergen Bioinformatics. International Journal of Environmental Research and Public Health, 18(22), Article 22. https://doi.org/10.3390/ijerph182212105
Alimissis, A., Philippopoulos, K., Tzanis, C. G., & Deligiorgi, D. (2018). Spatial estimation of urban air pollution with the use of artificial neural network models. Atmospheric Environment, 191, 205–213. https://doi.org/10.1016/j.atmosenv.2018.07.058
Al-Kindi, S. G., Brook, R. D., Biswal, S., & Rajagopalan, S. (2020). Environmental determinants of cardiovascular disease: Lessons learned from air pollution. Nature Reviews Cardiology, 17(10), 656–672. https://doi.org/10.1038/s41569-020-0371-2
Anderson, H. R., Ruggles, R., Pandey, K. D., Kapetanakis, V., Brunekreef, B., Lai, C. K. W., Strachan, D. P., Weiland, S. K., & Group, the I. P. O. S. (2010). Ambient particulate pollution and the world-wide prevalence of asthma, rhinoconjunctivitis and eczema in children: Phase One of the International Study of Asthma and Allergies in Childhood (ISAAC). Occupational and Environmental Medicine, 67(5), 293–300. https://doi.org/10.1136/oem.2009.048785
Baek, J.-O., Cho, J., & Roh, J.-Y. (2021). Associations between ambient air pollution and medical care visits for atopic dermatitis. Environmental Research, 195, 110153. https://doi.org/10.1016/j.envres.2020.110153
Baiardini, I., Braido, F., Brandi, S., & Canonica, G. W. (2006). Allergic diseases and their impact on quality of life. Annals of Allergy, Asthma & Immunology, 97(4), 419–429. https://doi.org/10.1016/S1081-1206(10)60928-3
Bantz, S. K., Zhu, Z., & Zheng, T. (2014). The Atopic March: Progression from Atopic Dermatitis to Allergic Rhinitis and Asthma. Journal of Clinical & Cellular Immunology, 5(2), 202. https://doi.org/10.4172/2155-9899.1000202
Bosson, J. A., Mudway, I. S., & Sandström, T. (2019). Traffic-related Air Pollution, Health, and Allergy: The Role of Nitrogen Dioxide. American Journal of Respiratory and Critical Care Medicine, 200(5), 523–524. https://doi.org/10.1164/rccm.201904-0834ED
Byun, D., & Schere, K. L. (2006). Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. Applied Mechanics Reviews, 59(2), 51–77. https://doi.org/10.1115/1.2128636
Cardona, V., Ansotegui, I. J., Ebisawa, M., El-Gamal, Y., Rivas, M. F., Fineman, S., Geller, M., Gonzalez-Estrada, A., Greenberger, P. A., Borges, M. S., Senna, G., Sheikh, A., Tanno, L. K., Thong, B. Y., Turner, P. J., & Worm, M. (2020). World Allergy Organization Anaphylaxis Guidance 2020. World Allergy Organization Journal, 13(10). https://doi.org/10.1016/j.waojou.2020.100472
Carrer, P., Maroni, M., Alcini, D., & Cavallo, D. (2001). Allergens in indoor air: Environmental assessment and health effects. Science of The Total Environment, 270(1), 33–42. https://doi.org/10.1016/S0048-9697(00)00791-9
Celebi Sözener, Z., Cevhertas, L., Nadeau, K., Akdis, M., & Akdis, C. A. (2020). Environmental factors in epithelial barrier dysfunction. Journal of Allergy and Clinical Immunology, 145(6), 1517–1528. https://doi.org/10.1016/j.jaci.2020.04.024
Charles A Janeway J., Travers P., Walport M., & Shlomchik M. J. (2001). Hypersensitivity diseases. In Immunobiology: The Immune System in Health and Disease. 5th edition. Garland Science. https://www.ncbi.nlm.nih.gov/books/NBK27136/
Chen, C.-C., Chiu ,Hui-Fen, & and Yang, C.-Y. (2016). Air pollution exposure and daily clinical visits for allergic rhinitis in a subtropical city: Taipei, Taiwan. Journal of Toxicology and Environmental Health, Part A, 79(12), 494–501. https://doi.org/10.1080/15287394.2016.1182002
Chen, P.-C., & Lin, Y.-T. (2022). Exposure assessment of PM2.5 using smart spatial interpolation on regulatory air quality stations with clustering of densely-deployed microsensors. Environmental Pollution, 292, 118401. https://doi.org/10.1016/j.envpol.2021.118401
Chen, W., Mempel, M., Schober, W., Behrendt, H., & Ring, J. (2008). Gender difference, sex hormones, and immediate type hypersensitivity reactions. Allergy, 63(11), 1418–1427. https://doi.org/10.1111/j.1398-9995.2008.01880.x
Chung, H.-Y., Hsieh, C.-J., Tseng, C.-C., & Yiin, L.-M. (2016). Association between the First Occurrence of Allergic Rhinitis in Preschool Children and Air Pollution in Taiwan. International Journal of Environmental Research and Public Health, 13(3), Article 3. https://doi.org/10.3390/ijerph13030268
Colás, C., Brosa, M., Antón, E., Montoro, J., Navarro, A., Dordal, M. T., Dávila, I., Fernández-Parra, B., Ibáñez, M. D. P., Lluch-Bernal, M., Matheu, V., Rondón, C., Sánchez, M. C., Valero, A., & Rhinoconjunctivitis Committee of the Spanish Society of Allergy and Clinical Immunology. (2017). Estimate of the total costs of allergic rhinitis in specialized care based on real-world data: The FERIN Study. Allergy, 72(6), 959–966. https://doi.org/10.1111/all.13099
Dąbrowiecki, P., Chciałowski, A., Dąbrowiecka, A., Piórkowska, A., & Badyda, A. (2023). Exposure to ambient air pollutants and short-term risk for exacerbations of allergic rhinitis: A time-stratified, case-crossover study in the three largest urban agglomerations in Poland. Respiratory Physiology & Neurobiology, 315, 104095. https://doi.org/10.1016/j.resp.2023.104095
Deng, Q., Lu, C., Yu, Y., Li, Y., Sundell, J., & Norbäck, D. (2016). Early life exposure to traffic-related air pollution and allergic rhinitis in preschool children. Respiratory Medicine, 121, 67–73. https://doi.org/10.1016/j.rmed.2016.10.016
Dierick, B. J. H., van der Molen ,Thys, Flokstra-de Blok ,Bertine M. J., Muraro ,Antonella, Postma ,Maarten J., Kocks ,Janwillem W.H., & and van Boven, J. F. M. (2020). Burden and socioeconomics of asthma, allergic rhinitis, atopic dermatitis and food allergy. Expert Review of Pharmacoeconomics & Outcomes Research, 20(5), 437–453. https://doi.org/10.1080/14737167.2020.1819793
Duan, J., Wang, X., Zhao, D., Wang, S., Bai, L., Cheng, Q., Gao, J., Xu, Z., Zhang, Y., Zhang, H., & Su, H. (2019). Risk effects of high and low relative humidity on allergic rhinitis: Time series study. Environmental Research, 173, 373–378. https://doi.org/10.1016/j.envres.2019.03.040
Emery, C., Baker, K., Wilson, G., & Yarwood, G. (2024). Comprehensive Air Quality Model with Extensions: Formulation and Evaluation for Ozone and Particulate Matter over the US. Atmosphere, 15(10), Article 10. https://doi.org/10.3390/atmos15101158
Fadadu, R. P., Abuabara, K., Balmes, J. R., Hanifin, J. M., & Wei, M. L. (2023). Air Pollution and Atopic Dermatitis, from Molecular Mechanisms to Population-Level Evidence: A Review. International Journal of Environmental Research and Public Health, 20(3), Article 3. https://doi.org/10.3390/ijerph20032526
Galli, S. J., Tsai, M., & Piliponsky, A. M. (2008). The development of allergic inflammation. Nature, 454(7203), 445–454. https://doi.org/10.1038/nature07204
Gu, X., Jing, D., Xiao, Y., Zhou, G., Yang, S., Liu, H., Chen, X., & Shen, M. (2023). Association of air pollution and genetic risks with incidence of elderly-onset atopic dermatitis: A prospective cohort study. Ecotoxicology and Environmental Safety, 253, 114683. https://doi.org/10.1016/j.ecoenv.2023.114683
Guarnieri, M., & Balmes, J. R. (2014). Outdoor air pollution and asthma. Lancet, 383(9928), 1581–1592. https://doi.org/10.1016/S0140-6736(14)60617-6
Guo, Q., Liang, F., Tian, L., Schikowski, T., Liu, W., & Pan, X. (2019). Ambient air pollution and the hospital outpatient visits for eczema and dermatitis in Beijing: A time-stratified case-crossover analysis. Environmental Science: Processes & Impacts, 21(1), 163–173. https://doi.org/10.1039/C8EM00494C
Holst, G. J., Pedersen, C. B., Thygesen, M., Brandt, J., Geels, C., Bønløkke, J. H., & Sigsgaard, T. (2020). Air pollution and family related determinants of asthma onset and persistent wheezing in children: Nationwide case-control study. https://doi.org/10.1136/bmj.m2791
Hou, X., Huang, H., Hu, H., Wang, D., Sun, B., & Zhang, X. D. (2021). Short-term exposure to ambient air pollution and hospital visits for IgE-mediated allergy: A time-stratified case-crossover study in southern China from 2012 to 2019. eClinicalMedicine, 37, 100949. https://doi.org/10.1016/j.eclinm.2021.100949
Huang, Y., Wen, H.-J., Guo, Y.-L. L., Wei, T.-Y., Wang, W.-C., Tsai, S.-F., Tseng, V. S., & Wang, S.-L. J. (2021). Prenatal exposure to air pollutants and childhood atopic dermatitis and allergic rhinitis adopting machine learning approaches: 14-year follow-up birth cohort study. Science of The Total Environment, 777, 145982. https://doi.org/10.1016/j.scitotenv.2021.145982
Hwang, C.-Y., Chen, Y.-J., Lin, M.-W., Chen, T.-J., Chu, S.-Y., Chih-Chiang Chen, Ding-Dar Lee, Yun-Ting Chang, Wen-Jen Wang, & Han-Nan Liu. (2010). Prevalence of Atopic Dermatitis, Allergic Rhinitis and Asthma in Taiwan: A National Study 2000 to 2007. Acta Dermato-Venereologica, 90(6), 589–594. https://doi.org/10.2340/00015555-0963
Iriti, M., Piscitelli, P., Missoni, E., & Miani, A. (2020). Air Pollution and Health: The Need for a Medical Reading of Environmental Monitoring Data. International Journal of Environmental Research and Public Health, 17(7), Article 7. https://doi.org/10.3390/ijerph17072174
Jerrett, M., Burnett, R. T., Ma, R., Pope, C. A. I., Krewski, D., Newbold, K. B., Thurston, G., Shi, Y., Finkelstein, N., Calle, E. E., & Thun, M. J. (2005). Spatial Analysis of Air Pollution and Mortality in Los Angeles. Epidemiology, 16(6), 727. https://doi.org/10.1097/01.ede.0000181630.15826.7d
Johansson, S. G. O., Bieber, T., Dahl, R., Friedmann, P. S., Lanier, B. Q., Lockey, R. F., Motala, C., Ortega Martell, J. A., Platts-Mills, T. A. E., Ring, J., Thien, F., Van Cauwenberge, P., & Williams, H. C. (2004). Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. Journal of Allergy and Clinical Immunology, 113(5), 832–836. https://doi.org/10.1016/j.jaci.2003.12.591
Kim, H., Kim, W.-H., Kim, Y.-Y., & Park, H.-Y. (2020). Air Pollution and Central Nervous System Disease: A Review of the Impact of Fine Particulate Matter on Neurological Disorders. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.575330
Koefoed H. J. L., Vonk J. M., & Koppelman G. H. (2022). Predicting the course of asthma from childhood until early adulthood. Current Opinion in Allergy and Clinical Immunology, 22(2), 115. https://doi.org/10.1097/ACI.0000000000000810
Kuo, C.-Y., Chan, C.-K., Wu, C.-Y., Phan, D.-V., & Chan, C.-L. (2019). The Short-Term Effects of Ambient Air Pollutants on Childhood Asthma Hospitalization in Taiwan: A National Study. International Journal of Environmental Research and Public Health, 16(2), Article 2. https://doi.org/10.3390/ijerph16020203
Lee, J. Y., Lee, S., & Bae, G. (2014). A review of the association between air pollutant exposure and allergic diseases in children. Atmospheric Pollution Research, 5(4), 616–629. https://doi.org/10.5094/APR.2014.071
Li, S., Wu, W., Wang, G., Zhang, X., Guo, Q., Wang, B., Cao, S., Yan, M., Pan, X., Xue, T., Gong, J., & Duan, X. (2022). Association between exposure to air pollution and risk of allergic rhinitis: A systematic review and meta-analysis. Environmental Research, 205, 112472. https://doi.org/10.1016/j.envres.2021.112472
Li, Y., Hong, T., Gu, Y., Li, Z., Huang, T., Lee, H. F., Heo, Y., & Yim, S. H. L. (2023). Assessing the Spatiotemporal Characteristics, Factor Importance, and Health Impacts of Air Pollution in Seoul by Integrating Machine Learning into Land-Use Regression Modeling at High Spatiotemporal Resolutions. Environmental Science & Technology, 57(3), 1225–1236. https://doi.org/10.1021/acs.est.2c03027
Liao, P.-F., Sun, H.-L., Lu, K.-H., & Lue, K.-H. (2009). Prevalence of Childhood Allergic Diseases in Central Taiwan over the Past 15 Years. Pediatrics & Neonatology, 50(1), 18–25. https://doi.org/10.1016/S1875-9572(09)60025-5
Luo, P., Ying, J., Li, J., Yang, Z., Sun, X., Ye, D., Liu, C., Wang, J., & Mao, Y. (2023). Air Pollution and Allergic Rhinitis: Findings from a Prospective Cohort Study. Environmental Science & Technology, 57(42), 15835–15845. https://doi.org/10.1021/acs.est.3c04527
Ma, J., Ding, Y., Gan, V. J. L., Lin, C., & Wan, Z. (2019). Spatiotemporal Prediction of PM2.5 Concentrations at Different Time Granularities Using IDW-BLSTM. IEEE Access, 7, 107897–107907. https://doi.org/10.1109/ACCESS.2019.2932445
Miyazaki, D., Fukagawa, K., Fukushima, A., Fujishima, H., Uchio, E., Ebihara, N., Shoji, J., Takamura, E., Namba, K., Ohashi, Y., Okamoto, S., Satake, Y., Ohtsu, H., Shimizu, Y., & Inoue, Y. (2019). Air pollution significantly associated with severe ocular allergic inflammatory diseases. Scientific Reports, 9(1), 18205. https://doi.org/10.1038/s41598-019-54841-4
Motterlini, R., & Otterbein, L. E. (2010). The therapeutic potential of carbon monoxide. Nature Reviews Drug Discovery, 9(9), 728–743. https://doi.org/10.1038/nrd3228
Noh, J., Sohn, J., Cho, J., Cho, S.-K., Choi, Y. J., Kim, C., & Shin, D. C. (2016). Short-term Effects of Ambient Air Pollution on Emergency Department Visits for Asthma: An Assessment of Effect Modification by Prior Allergic Disease History. Journal of Preventive Medicine and Public Health, 49(5), 329–341. https://doi.org/10.3961/jpmph.16.038
Nolte, H., Backer, V., & Porsbjerg, C. (2001). Environmental factors as a cause for the increase in allergic disease. Annals of Allergy, Asthma & Immunology, 87(6, Supplement), 7–11. https://doi.org/10.1016/S1081-1206(10)62333-2
Nurmagambetov, T., Kuwahara, R., & Garbe, P. (2018). The Economic Burden of Asthma in the United States, 2008–2013. Annals of the American Thoracic Society, 15(3), 348–356. https://doi.org/10.1513/AnnalsATS.201703-259OC
O’Connell, E. J. (2003). Pediatric allergy: A brief review of risk factors associated with developing allergic disease in childhood. Annals of Allergy, Asthma & Immunology, 90(6, Supplement), 53–58. https://doi.org/10.1016/S1081-1206(10)61661-4
Park, S. K., Kim, J. S., & Seo, H.-M. (2022). Exposure to air pollution and incidence of atopic dermatitis in the general population: A national population-based retrospective cohort study. Journal of the American Academy of Dermatology, 87(6), 1321–1327. https://doi.org/10.1016/j.jaad.2021.05.061
Pawankar, R. (2014). Allergic diseases and asthma: A global public health concern and a call to action. World Allergy Organization Journal, 7(1), 1–3. https://doi.org/10.1186/1939-4551-7-12
Pinart, M., Keller, T., Reich, A., Fröhlich, M., Cabieses, B., Hohmann, C., Postma, D. S., Bousquet, J., Antó, J. M., & Keil, T. (2017). Sex-Related Allergic Rhinitis Prevalence Switch from Childhood to Adulthood: A Systematic Review and Meta-Analysis. International Archives of Allergy and Immunology, 172(4), 224–235. https://doi.org/10.1159/000464324
Rajagopalan, S., & Brook, R. D. (2012). Air Pollution and Type 2 Diabetes: Mechanistic Insights. Diabetes, 61(12), 3037–3045. https://doi.org/10.2337/db12-0190
Sampath, V., Aguilera, J., Prunicki, M., & Nadeau, K. C. (2023). Mechanisms of climate change and related air pollution on the immune system leading to allergic disease and asthma. Seminars in Immunology, 67, 101765. https://doi.org/10.1016/j.smim.2023.101765
Santos, U. de P., Arbex, M. A., Braga, A. L. F., Mizutani, R. F., Cançado, J. E. D., Terra-Filho, M., & Chatkin, J. M. (2021). Environmental air pollution: Respiratory effects. Jornal Brasileiro de Pneumologia, 47, e20200267. https://doi.org/10.36416/1806-3756/e20200267
Savouré, M., Bousquet, J., Jaakkola, J. J. K., Jaakkola, M. S., Jacquemin, B., & Nadif, R. (2022). Worldwide prevalence of rhinitis in adults: A review of definitions and temporal evolution. Clinical and Translational Allergy, 12(3), e12130. https://doi.org/10.1002/clt2.12130
Sbihi, H., Allen, R. W., Becker, A., Brook, J. R., Mandhane, P., Scott, J. A., Sears, M. R., Subbarao, P., Takaro, T. K., Turvey, S. E., & Brauer, M. (2015). Perinatal Exposure to Traffic-Related Air Pollution and Atopy at 1 Year of Age in a Multi-Center Canadian Birth Cohort Study. Environmental Health Perspectives, 123(9), 902–908. https://doi.org/10.1289/ehp.1408700
Schwartz, J. (2004). Air Pollution and Children’s Health. Pediatrics, 113(Supplement_3), 1037–1043. https://doi.org/10.1542/peds.113.S3.1037
Shi, Y., Ho, H. C., Xu, Y., & Ng, E. (2018). Improving satellite aerosol optical Depth-PM2.5 correlations using land use regression with microscale geographic predictors in a high-density urban context. Atmospheric Environment, 190, 23–34. https://doi.org/10.1016/j.atmosenv.2018.07.021
Shin, Y. H., Hwang, J., Kwon, R., Lee, S. W., Kim, M. S., Shin, J. I., & Yon, D. K. (2023). Global, regional, and national burden of allergic disorders and their risk factors in 204 countries and territories, from 1990 to 2019: A systematic analysis for the Global Burden of Disease Study 2019. Allergy, 78(8), 2232–2254. https://doi.org/10.1111/all.15807
Simons, F. E. R., Ardusso, L. R. F., Bilò, M. B., El-Gamal, Y. M., Ledford, D. K., Ring, J., Sanchez-Borges, M., Senna, G. E., Sheikh, A., & Thong, B. Y. (2011). World Allergy Organization Guidelines for the Assessment and Management of Anaphylaxis. World Allergy Organization Journal, 4(2), 13–37. https://doi.org/10.1097/WOX.0b013e318211496c
Singh, A. B. (2018). Allergen Preparation and Standardization: An Update. 17(4), 555968. https://doi.org/10.19080/GJO.2018.17.555968
Sirufo, M. M., De Pietro, F., Ginaldi, L., & De Martinis, M. (2022). Sex, Allergic Diseases and Omalizumab. Biomedicines, 10(2), Article 2. https://doi.org/10.3390/biomedicines10020328
Son, Y., Osornio-Vargas, Á. R., O’Neill, M. S., Hystad, P., Texcalac-Sangrador, J. L., Ohman-Strickland, P., Meng, Q., & Schwander, S. (2018). Land use regression models to assess air pollution exposure in Mexico City using finer spatial and temporal input parameters. Science of The Total Environment, 639, 40–48. https://doi.org/10.1016/j.scitotenv.2018.05.144
Tiotiu, A. I., Novakova, P., Nedeva, D., Chong-Neto, H. J., Novakova, S., Steiropoulos, P., & Kowal, K. (2020). Impact of Air Pollution on Asthma Outcomes. International Journal of Environmental Research and Public Health, 17(17), Article 17. https://doi.org/10.3390/ijerph17176212
Tseng, H.-W. (2024). Effect of Ambient Air Pollutants Exposure on Clinic Visits for Atopic Dermatitis, a Nationwide Study in Central-Southern Taiwan. Aerosol and Air Quality Research, 24(12), 240130. https://doi.org/10.4209/aaqr.240130
Uzzaman, A., & Cho, S. H. (2012). Chapter 28: Classification of hypersensitivity reactions. Allergy and Asthma Proceedings, 33(3), 96–99. https://doi.org/10.2500/aap.2012.33.3561
Wang, I.-J., Tung, T.-H., Tang, C.-S., & Zhao, Z.-H. (2016). Allergens, air pollutants, and childhood allergic diseases. International Journal of Hygiene and Environmental Health, 219(1), 66–71. https://doi.org/10.1016/j.ijheh.2015.09.001
WHO. (2021). 全球空氣品質指南. WHO. https://iris.who.int/bitstream/handle/10665/345329/9789240034228-eng.pdf?sequence=1&isAllowed=y
Wong, P.-Y., Lee, H.-Y., Chen, Y.-C., Zeng, Y.-T., Chern, Y.-R., Chen, N.-T., Candice Lung, S.-C., Su, H.-J., & Wu, C.-D. (2021). Using a land use regression model with machine learning to estimate ground level PM2.5. Environmental Pollution, 277, 116846. https://doi.org/10.1016/j.envpol.2021.116846
Wu, C.-D., Zeng, Y.-T., & Lung, S.-C. C. (2018). A hybrid kriging/land-use regression model to assess PM2.5 spatial-temporal variability. Science of The Total Environment, 645, 1456–1464. https://doi.org/10.1016/j.scitotenv.2018.07.073
Zhong, J.-Y., Lee, Y.-C., Hsieh, C.-J., Tseng, C.-C., & Yiin, L.-M. (2019). Association between the first occurrence of allergic conjunctivitis, air pollution and weather changes in Taiwan. Atmospheric Environment, 212, 90–95. https://doi.org/10.1016/j.atmosenv.2019.05.045
余清祥, 簡于閔, & 梁穎誼. (2020). 健保資料與抽樣調查. 調查研究-方法與應用, 4, 97–130. https://doi.org/10.7014/SRMA.2020040003
古鯉榕, 李佳純, & 李中ㄧ. (2018). 臺灣「醫療利用歸人檔資料庫」之建置介紹. 健康科技期刊, 11–23. https://doi.org/10.6979/TJHS.201812/SP.0003
吳依凡. (2004). 醫療資源可近性對個人醫療利用的影響─台灣地區的相關研究 [中央大學產業經濟研究所學位論文]. https://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=91424005
廖唯安. (2015). 台灣腦中風患者居住地都市化程度與住院復健次數之相關性探討. https://doi.org/10.6833/CJCU.2015.00158
廖建彰, 李采娟, 林瑞雄, & 宋鴻樟. (2006). 2000年台灣腦中風發生率與盛行率的城鄉差異. 台灣公共衛生雜誌, 25(3), 223–230. https://doi.org/10.6288/TJPH2006-25-03-06
戴惠卿. (2014). 醫療資源與跨區就醫探討探討-以苗栗縣為例 [臺北醫學大學醫務管理學研究所學位論文]. https://doi.org/10.6831/TMU.2014.00033
李昇龍. (2015). 由健保資料庫探討台灣 常住人口與醫療利用. https://nccur.lib.nccu.edu.tw/ir/handle/140.119/77917
林姿蓉. (2020). 臺灣短期細懸浮微粒與氣喘之關聯性分析—健保資料庫與政府民間空品資料之整合應用 [國立成功大學環境工程學系學位論文]. https://nckur.lib.ncku.edu.tw/handle/987654321/245582
林宜靜, 李淑芬, & 蔡偉德. (2012). 雪山隧道通車對宜蘭縣急性心肌梗塞病患救治結果之影響. 台灣公共衛生雜誌, 31(4), 388–397. https://doi.org/10.6288/TJPH2012-31-04-09
林昱廷. (2019). 結合環保署與空氣盒子數據開發智慧空污暴露推估模式 [國立成功大學環境工程學系學位論文]. https://nckur.lib.ncku.edu.tw/handle/987654321/245617
林民浩, 楊安琪, & 溫在弘. (2011). 利用地區差異與人口學特徵評估全民健保資料庫人口居住地變項之推估原則. 台灣公共衛生雜誌, 30(4), 347–361. https://doi.org/10.6288/TJPH2011-30-04-05
林谷峯. (2004). 以全民健保1996-2001年承保抽樣歸人檔分析氣喘病人之醫療利用 [國立台灣大學醫療機構管理研究所學位論文]. https://doi.org/10.6342/NTU.2004.02079
民生公共物聯網. (n.d.). 民生公共物聯網-資料服務平台. https://ci.taiwan.gov.tw/dsp/
江姿穎. (2015). 鄰近六輕工業區孩童之空氣汙染暴露與過敏性疾病及支氣管炎相關性研究 [國立臺灣大學職業醫學與工業衛生研究所學位論文]. https://doi.org/10.6342/NTU.2015.01971
環境部. (n.d.-a). 特殊性工業區空氣品質監測管制資訊網. https://aqmsopen.moenv.gov.tw/Default.aspx#gsc.tab=0
環境部. (n.d.-b). 空氣品質監測小時值(一般污染物,每日更新). 環境部環境資料開放平臺. https://data.moenv.gov.tw/dataset/detail/AQX_P_15
環境部. (2023). 空氣污染物排放量清冊. https://air.moenv.gov.tw/EnvTopics/AirQuality_6.aspx
環境部. (2024). 空氣品質標準法規 (環境部空字第 1131062467 號). https://airtw.moenv.gov.tw/CHT/Information/Standard/Rules.aspx
翁佩詒. (2020). 結合土地利用迴歸與機械學習演算法發展二氧化氮之高時空解析度推估模型 [國立成功大學環境醫學研究所學位論文]. https://nckur.lib.ncku.edu.tw/handle/987654321/274591
臺中市政府環境保護局. (n.d.). 臺中市政府環境保護局即時空氣品質監測網. https://taqm.epb.taichung.gov.tw/
臺北市政府環境保護局環境檢驗中心. (n.d.). 臺北市環境品質資訊網. https://www.tldep.gov.taipei/Public/Default.aspx
蘇均珺, 翁佩詒, 曾于庭, 李佳禾, & 吳治達. (2024). 基於土地利用迴歸之機器學型模型分析新冠肺炎三級警戒政策對臺灣工業城市細懸浮微粒之影響. 航測及遙測學刊, 29(3). https://doi.org/10.6574/JPRS.202409_29(3).0003
衛生福利部統計處. (2021). 世界過敏性疾病日衛生福利統計通報. 衛生福利部統計處. https://dep.mohw.gov.tw/DOS/cp-5112-63003-113.html
謝說評. (2019). 比較台灣室外空氣污染物及氣象因子與過敏性結膜炎及與過敏性鼻炎之關聯性異同 [慈濟大學公共衛生學系學位論文]. http://www.dap.library.tcu.edu.tw/handle/987654321/5136
鍾慧穎. (2014). 利用全民健康保險資料探討室外空氣汙染物濃度與學齡前兒童過敏性疾病之關聯 [慈濟大學公共衛生學系學位論文]. http://www.dap.library.tcu.edu.tw/handle/987654321/1685
陳渼雅. (2005). 以全民健保2000–2003年承保抽樣歸人檔分析過敏性鼻炎患者之醫療利用情形及其相關因素. 臺灣大學醫療機構管理研究所學位論文, 1–111. https://doi.org/10.6342/NTU.2005.02872
高雄市政府環境保護局. (n.d.). 高雄市政府環境保護局環境監測網. https://lab.ksepb.kcg.gov.tw/kaqm/tw/default.aspx