簡易檢索 / 詳目顯示

研究生: 王尹暘
Wang, Yin-Yang
論文名稱: 以決策樹預測台南世紀之門房價
Applying Decision Tree to Predict the House Prices of the Century Gate Buiding in Tainan
指導教授: 潘南飛
Pan, Nang-Fei
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 81
中文關鍵詞: 決策樹資料探勘房價預測實價登錄
外文關鍵詞: Decision Tree, Actual Price Registration, Predicting House Prices, Data Mining
相關次數: 點閱:71下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來台灣房價居高不下,讓許多人打消買房念頭,根據世界銀行的統計,發達國家正常的房價所得比一般在1.8~5.5之間, 然而2023年台灣的房價所得比卻為20.1,台北更高達29.5,遠高於世界銀行統計的合理值。為了打造健全的房市,內政部於民國101年8月開始推動「實價登錄系統」,旨在提高房地產價格的透明度,透過公開實際交易價格解決以往的資訊不對稱問題。這項措施不僅讓一般民眾更加瞭解市場行情,還能緩解因資訊不對稱導致的高房價問題。為方便一般民眾的使用和查詢,本研究使用的所有數據都來自實價登錄系統以及政府機關的公開資料。研究方法部分,本研究使用決策樹CART和CHAID建構了房價預測模型,並對其進行比較分析。
    本研究使用內政部實價登錄系統的實際交易價格資訊進行研究,樣本選取範圍限制在台南市北區世紀之門大樓,對特定建案進行研究分析,並將外在環境條件影響降至最低。過去,許多研究使用類神經網路與迴歸模型來預測房價走勢,但使用決策樹來預測房價的研究相對較少,因此,本研究欲以CART決策樹和CHAID決策樹來預測房價,相比於類神經網路預測的不透明性,決策樹模型能夠清楚地呈現其規則和分類流程,讓使用者更容易理解。
    本研究針對世紀之門大樓進行房價預測,並進行兩種決策樹方法的比較分析,研究結果顯示,在預測準確度上CHAID法準確度高於CART法,而兩種決策樹方法的R-Squared值均超過0.75,這表明兩種模型對於世紀之門大樓的房價預測皆具有相當高的解釋能力,因此,本研究的模型可作為購買世紀之門大樓或周邊地區的房價預測參考依據。

    In recent years, Taiwan's housing prices have remained persistently high, dissuading people from considering property purchases. In order to implement housing justice and a health housing market, the Ministry of Interior began to promote the Actual Price Registration System in 2012 to increase the transparency of market price of the real estate, and to solve the problem of information asymmetry in the past by disclosing actual transaction prices. Due to information asymmetry, the general public has less information about the market conditions. In order to make it easier for the general public to use and inquire, all the data used in this research is from the public information of the government agencies. The decision tree is used to build house price prediction models for mutual comparison and analysis. Hope these methods can provide helps to solve the problems caused by information asymmetry.
    In the past, many studies have used neural network regression models to predict housing price trends. However, using a decision tree to predict housing prices is relatively rare in data mining techniques. Therefore, this study used two decision trees to predict housing prices. Compared to neural network, the decision tree model is more transparent, allowing users to understand the rules and classification process more clearly.
    The results of the study show that the R-Squared value of the two methods are above 0.75, which shows these two models have high explanatory power to predict house prices.

    摘要 Ⅰ 目錄 Ⅴ 表目錄 Ⅶ 圖目錄 Ⅷ 第一章 緒論1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究範圍與限制 4 1.4 研究流程與架構 6 第二章 文獻回顧 7 2.1實價登錄 7 2.2房價估價法相關研究 8 2.3資料探勘 11 2.3.1資料探勘定義 11 2.3.2資料探勘模式 11 2.3.3資料探勘流程 12 2.4決策樹模型 13 2.4.1 決策樹種類 14 2.4.2 決策樹演算法與剪枝 15 2.5決策樹應用相關文獻 20 2.6房價相關文獻之探討 22 第三章 研究方法 25 3.1建立流程 25 3.2房價相關變數 26 3.2.1 內政部實價登錄資料所引用之數據 26 3.2.2 相關參考政府調查指數 26 3.3資料正規化 29 3.4衡量指標 29 3.4.1相關分析 29 3.4.2均方根誤差29 第四章 案例分析與探討 31 4.1研究建案介紹 31 4.2預測模式選擇 31 4.3分析使用變數定義 31 4.4變數中未納入之變數 33 4.5房價預測CART決策樹模型 34 4.5.1 模型參數設置 35 4.6房價預測CHAID決策樹模型 38 4.6.1 模型參數設置 39 4.7房價預測CHAID(三分支)決策樹模型 42 4.7.1 模型參數設置 42 4.8結果討論 45 4.9決策樹與迴歸分析及類神經網路結果比較 47 4.10預測未來三年世紀之門大樓之房價 48 第五章 結論與建議 57 5.1結論與貢獻 57 5.2後續研究與建議 58 參考文獻 59 附錄 61

    1.彭于萍,「資料探勘應用於圖書觀之探討」,圖書與資訊學刊, 2004。
    2.林群立、蔡文祥,「使用條件式二元樹的資料探勘方法」,中華民國資訊管理學會研討會,2003年
    3.蔡志豪、許志遠,「以網格搜尋法為基礎之決策樹演算法」,中華民國資訊管理學會研討會,2006年。
    4.蘇明潔、陳威廷,「以改良式CART決策樹為基礎的網站流量分析」,中華民國資訊管理學會研討會,2008年。
    5.黃郁芬、郭芝蘭、許麗珍,「複合式決策樹於聲學訊號之分類應用」,中華民國資訊管理學會研討會,2010年。
    6.王國禎、劉毓麟,「基於改良式CART演算法的醫療數據探勘」,中華民國資訊管理學會研討會,2011年。
    7.林怡君,「台灣房價的決定因素」,碩士論文,2017。
    8.陳威舟,「房價預測模型建構-以台南市交易資料為例」,碩士論文,2016。
    9.馮世傑,「房價影響變數之探討¬-以台北市為例」,碩士論文,2014。
    10.蔡智政,「應用CART決策樹與資料視覺技術於低良率晶圓成因探討」,碩士論文,2002
    11.賴碧瑩,「房地產景氣指標之研究」,1989
    12.Mohammad M. Ghiasi,Sohrab Zendehboudi “Application of decision tree-based ensemble learning in the classification of breast cancer”, Computers in Biology and Medicine 128,2021
    13.Gaurav L. Agrawal, Prof. Hitesh Gupta“Optimization of C4.5 Decision Tree Algorithm for Data Mining Application”, International Journal of Emerging Technology and Advanced Engineering,2013
    14.Daniel Westreich, Justin Lessler, Michele Jonsson Funk “ Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression ” ,Journal of Clinical Epidemiology,2010
    15.Byeonghwa Park, Jae Kwon Bae,“Using machine learning algorithms for housing price prediction: The case of Fairfax County, Virginia housing data”, Expert System With Application,2015
    16.許智淵,類神經網路技術與特徵價格法於台北市房價預測結果之比較研究, 碩士論文,2012
    17.王俊傑,台北市新房價格趨勢預測平台之雛形研究,碩士論文,2016
    18.S. Celik,O. Yilmaz,“COMPARISON OF DIFFERENT DATA MINING ALGORITHMS FOR PREDICTION OF BODY WEIGHT FROM SEVERAL MORPHOLOGICAL MEASUREMENTS IN DOGS”,The Journal of Animal & Plant Sciences, 2017
    19.Yeling Yang , Feng Yi , Chuancheng Deng ,Guang Sun , “Performance Analysis of the CHAID Algorithm for Accuracy”,Mathematics article, 2023
    20.黃智穎,台南市成大城房價之預測,碩士論文,2021
    21.王榮傑,新北市淡海新市鎮房價之分析: 以盛宏新世界案為例,碩士論文,2022

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE