簡易檢索 / 詳目顯示

研究生: 范振唐
Fan, Cheng-Tang
論文名稱: 光固化微型3D列印機之開發與應用
Development of Stereolithography Micro 3D Printer and Its Applications
指導教授: 張仁宗
Chang, Ren-Jung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 129
中文關鍵詞: 光固化3D列印高分子材料撓性機構微夾持器
外文關鍵詞: Stereolithography, 3D Printing, Compliant Mechanisms, Micro Gripper
相關次數: 點閱:126下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要開發、設計並製造出一用於生產微型撓性機構之光固化微型3D列印機,並對其加工出的工件做特性測試。使用公理設計作為設計依據,透過攝影機對其進行加工前之校正與誤差補償,開發出光點直徑120微米,光點位移解析度0.5微米之3D列印機。設計加工實驗觀察列印出的特定圖形以測試列印機之性能,並列印撓性軸承懸臂以求得列印物件之楊氏係數。另一方面,設計具力量感測器的微夾持器,並利用攝影機擷取並監控微夾持器夾持直徑80微米銅線的情形。最後,再透過製造出的立體式微夾持器夾持不同直徑之金屬棒。

    This research is focused on developing, designing and building a stereolithography micro 3D printer that is used in manufacturing micro compliant mechanisms. The characteristics of the printed objects are also determined by manufacturing specific patterns and mechanisms. Designed with Axiomatic design, the 3D printer has a light spot diameter of 120μm and spot displacement definition of 0.5μm. The Young’s modulus of the printed objects are obtained with cantilever beans. With a micro force sensor, the gripping force of printed gripper is measured. Both the Young’s modulus and the gripping force are verified with FEA (finite element analysis). After the micro 3D printer was tested, a 2D micro gripper was designed and manufactured. The mathematical model of the 2D gripper is derived. A new designing method for 3D micro compliant mechanism is also designed. A 3D micro gripper is designed via this method. The capability of the 3D micro gripper is tested through gripping rods with diameters of 50μm, 80μm and 110μm. An micro assembly experiment is also performed on the micro assembly system.

    摘要 I Extended Abstract II 目錄 VI 表目錄 X 圖目錄 XI 符號表 XVII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 1-3 文獻回顧 2 1-3.1 撓性機構 2 1-3.2 熔融沉積(Fused Deposition Modeling, FDM) 3 1-3.3 選擇性雷射融化(Selective Laser Melting, SLM) 5 1-3.4 粉床噴墨3D列印(Power bed and inkjet head 3D printing, 3DP) 6 1-3.5 光固化成型(Stereolithography, SLA) 7 1-3.6 SLA列印機於撓性機構之應用 10 1-4 研究方法與研究目標 12 1-5 本文架構 13 第二章 基礎理論 14 2-1 前言 14 2-2 光化學反應 14 2-2.1 光化學反應第一定律(Grotthuss–Draper law) 14 2-2.2 光化學反應第二定律(Stark-Einstein law) 15 2-2.3 光吸收定律(Beer-Lambert law) 15 2-2.4 光固化特性 16 2-3 紫外光固化技術 17 2-3.1 預聚物(Oligomers) 19 2-3.2 單體(Monomers) 19 2-3.3 光引發劑(Photoinitiators) 20 2-3.4 其它助劑 20 2-4 毛細作用 20 2-4.1 毛細長度 21 2-4.2 水滴形狀 22 2-5 本章總結 24 第三章 系統設計安裝與校正 25 3-1 微型光固化3D列印機的設計 25 3-1.1 設計目標 25 3-1.2系統設計 28 3-2 軟硬體實現 32 3-2.1 電路 32 3-2.2 感測器 33 3-2.3 致動器 34 3-2.4 LabVIEW軟體運算與人機介面 40 3-2.5 系統實體圖 41 3-3列印機校正 42 3-3.1 光點大小校正 42 3-3.2 光軸與Z軸平行補償 44 3-3.3 載物平台水平度調整 48 3-4 列印流程與參數設定 48 3-4.1 目標圖檔與列印路徑規劃 49 3-4.2 列印機設定 52 3-4.3 後固化 54 3-4.4 測試使用之參數 55 3-5 本章總結 56 第四章 系統與列印性能基本測試 57 4-1 商用3D列印機性能分類 57 4-1.1 最高列印速度 57 4-1.2 特徵細節解析度 58 4-1.3 尺寸準度 58 4-2 光固化微型3D列印機性能鑑定測試 59 4-2.1 點測試 60 4-2.2 直線測試 62 4-2.3 角度測試 64 4-2.4 圓弧測試 66 4-2.5 方形測試 67 4-2.6 圓形測試 70 4-2.7 疊層測試 72 4-2.8 高徑比測試 75 4-3 翹曲現象 76 4-3.1 翹曲現象成因 77 4-3.2 翹曲現象解決方法 78 4-4 撓性軸承懸臂之製造與實驗 80 4-4.1 撓性軸承懸臂的製造 81 4-4.2 撓性軸承懸臂實驗分析 84 4-5 本章總結 92 第五章 光固化微型3D列印機之應用 94 5-1 平面撓性機構設計、製造與測試 94 5-1.1 四連桿機構製造與測試 94 5-1.2 撓性微夾持器設計與製造 96 5-1.3 撓性微夾持器操作 104 5-1.4 微力量感測器製造與測試 107 5-2 立體式微夾持器 109 5-2.1 夾持圓柱型物件用立體式微夾持器設計與製造 110 5-2.2 夾持平板型物件用立體式微夾持器設計與製造 117 5-3 立體式微夾持器於微組裝系統之應用 119 5-3.1 夾持器開口微調機構 119 5-3.2 微夾持器測試 121 5-4 本章總結 124 第六章 結論與未來展望 125 6-1 結論 125 6-2 未來展望 126 參考文獻 127

    [1] 張仁宗、曹祖英、程永華、沈振華、程世偉,“準分子設置造微型撓性機構之研究,"中國機械工程學會第十一屆全國自動化科技研討會論文集,pp.111-118,中華民國八十三年。
    [2] R. J. Chang and Y. L. Wang, “Integration method for input-output modeling and error analysis of four-bar polymer compliant micromachines,” ASME, Vol. 121, pp.220-228, 1999.
    [3] 蘇竣雄,“微細物件遙控與自動控制組裝系統之發展,"國立成功大學機械工程所碩士論文,2003。
    [4] 張景堯,“形狀記憶合金驅動高分子微夾持系統之發展,"國立成功大學機械工程所碩士論文,pp.16,2003。
    [5] Kerry Stevenson (2015, Dec), Materialise Patents a 3D Gripper? Fabbaloo. Retrieved March 5, 2017, from http://www.fabbaloo.com/blog/2015/12/20/materialise-patents-a-3d-gripper
    [6] Wikipedia (2016, Oct), S. Scott Crump. Retrieved February 22, 2017, from https://en.wikipedia.org/wiki/S._Scott_Crump
    [7] Wikipedia (2016, Oct), Fused deposition modeling. Retrieved February 22, 2017, from
    https://en.wikipedia.org/wiki/Fused_deposition_modeling
    [8] J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Romboutsb, B. Lauwers, “Selective laser melting of iron-based powder,” Journal of Materials Processing Technology, 2003.
    [9] 張蕙娟(2014, Aug), 3D PRINTER MANUFACTURING. Bpaper. Retrieved February 18, 2017, from
    http://www.bpaper.org.tw/strategy/3d-printer-manufacturing%EF%BC%883d%E5%8D%B0%E8%A1%A8%E6%A9%9F%E7%94%A2%E6%A5%AD%EF%BC%89/
    [10] Andrew T. Gaynor, Nicholas A. Meisel, Christopher B. Williams, James K. Guest, “Multiple-MaterialTopology Optimization of Compliant Mechanisms Created Via PolyJet Three-Dimensional Printing,” Journal of Manufacturing Science and Engineering, 2014.
    [11] Formlabs (2016, Nov), 3D Printing Technology Comparison: SLA vs. DLP. Formlabs. Retrieved February 15, 2017, from http://www.fabbaloo.com/blog/2015/12/20/materialise-patents-a-3d-gripper
    [12] Tarou Takagi, Naomasa Nakajima, “Architecture Combination by Micro Photoforming Process,” IEEE, 1994.
    [13] Wikipedia (2017), Photochemistry. Retrieved February 7, 2017, from https://en.wikipedia.org/wiki/Photochemistry
    [14] 張琳琳, “紫外光固化成形用增韌材料的研究”, 華中科技大學材料加工工程碩士論文, 2006.
    [15] W. Adamson, Physical Chemistry of Surfaces, New York: John Wiley and Sons, 1976.
    [16] G. Debregeas and F. Brochard-Wyart, J. Colloid Interface Sci, 190, 134 (1997).
    [17] Ultimaker (2017), Cura Software. Retrieved March 15, 2017, from https://ultimaker.com/en/products/cura-software
    [18] XYZprinting (2017), 光敏樹脂-彈性樹酯. Retrieved March 14, 2017, from http://tw.xyzprinting.com/tw_zh_tw/Product/Flexible-Resin
    [19] N. P. Suh, The Principles of Design, Oxford University Press, New York, 1990.
    [20] 謝育倉, “銲線機維護與服務之整合法”, 國立成功大學機械工程所碩士論文, 2007.
    [21] 羅技 (2017), HD網路攝影機C310. Retrieved April 10, 2017 from http://support.logitech.com/zh_tw/product/hd-webcam-c310
    [22] SIGMAKOKI (2017), 西格瑪光機株式會社. Retrieved April 10, 2017 from https://www.global-optosigma.com/cn/
    [23] SolidWizard (2017), “3D列印機購買指南”, Retrievved May 28, 2017, from http://www.swtc.com/cht/image/event/2013/130326/3d_ whitepaper.pdf
    [24] 趙亞溥(2014), 《納米與介觀力學》, 北京:科學出版社.
    [25] Stoney G G, “The tension of metallic films deposited by electrolysis,” Proceedings of the Royal Society London A, 1909, 82: 172-175.
    [26] Freund L B. “Substrate curvature due to thin films mismatch strain in the nonlinear deformation range,” Journal of the Mechanical and Physics of Solids, 2000, 48: 1159-1174.
    [27] 机啟成, “形狀記憶和金驅動生醫用高分子微夾持系統之發展”, 國立成功大學機械工程所碩士論文, 2003.
    [28] J. M. Paros, “How to design flexure hinges,” Machine design, vol. 36, pp151-156, 1965.
    [29] 馮瑨, “微作業端效器之設計製造與測試”, 國立成功大學機械工程所碩士論文, 2001.
    [30] 馮瑨, “微型撓性機械材料特性量測研究”, 國立成功大學機械工程系大專生參與專題研究計畫研究成果報告, 2000.
    [31] 鄭志羿,“微夾持器力量控制之發展", 國立成功大學機械工程所碩士論文, 2005.
    [32] 程永華,“壓電制動微型撓性夾持器之設計、製造與控制", 國立成功大學機械工程所碩士論文, 1999.
    [33] 鄭志羿,“微夾持器力量控制之發展", 國立成功大學機械工程所碩士論文, 2005.
    [34] 趙家成,“擴增實境於微物件組裝之實現", 國立成功大學機械工程所碩士論文, 2013.
    [35] 孫華偉,“影像伺服自動操縱液體環境中之微粒子", 國立成功大學機械工程所碩士論文, 2009.

    下載圖示 校內:2022-08-01公開
    校外:2022-08-01公開
    QR CODE