| 研究生: |
王詩婷 Wang, Shih-Ting |
|---|---|
| 論文名稱: |
台灣紡織廢水及鄰近水體中全氟化物流布之研究 Occurrence and trends in concentrations of perfluoroalkyl substances in the wastewater of the textile factories and neighboring water bodies in Taiwan |
| 指導教授: |
陳女菀如
Chen, Wan-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 全氟化物 、全氟丁酸 、全氟辛酸 、全氟辛烷磺酸 、全氟壬酸 、紡織業 、地下水 、有機碳 |
| 外文關鍵詞: | perfluoroalkyl substances, perfluoralkyl acids, perfluorooctanoic acid, perfluorooctane sulfonate, perfluorononanoic acid, perfluorobutyric acid, textile industry, groundwater, organic carbons |
| 相關次數: | 點閱:71 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全氟化物是人工合成的化合物,因為具有疏水及疏油的特性而廣泛應用在生活用品及工業製程中,台灣紡織業為了使機能性布料具有防水抗污性,在製程中會使用到可能含有全氟化物的撥水劑加工機能性布料。因此,本研究挑選常使用的三種的長鏈全氟化物—全氟辛酸(PFOA)、全氟辛烷磺酸(PFOS)及全氟壬酸(PFNA)和一種短鏈的全氟化物—全氟丁酸(PFBA)進行調查,調查八間紡織廠的廢水(廢水處理廠進流水及出流水)、污泥、承受水體的底泥及鄰近紡織廠的地下水中全氟化物的含量。我們也分析了固態樣品(底泥及污泥)孔隙水中全氟化物濃度、固態樣品總有機碳含量及孔隙水中溶解性有機碳含量,並計算有機碳–水分配係數(organic carbon normalized distribution coefficient, Koc),探討有機物對於全氟化物在水相環境中固相與液相分配的影響。
紡織廢水處理廠進流水中四種化合物的平均濃度分別為PFOA 40.2±47.6 ng/L、PFOS 5.1±3.0 ng/L、PFNA 8.3±9.0 ng/L及PFBA 67.6±23.0 ng/L;出流水中的平均濃度分別為PFOA 61.6±87.7 ng/L、PFOS 1.7±1.8 ng/L、PFNA 8.9±15.3 ng/L及PFBA 81.1±62.2 ng/L,進流水與出流水中濃度相差無幾,顯示廢水處理程序對於全氟化物的去除效率不彰,出流水成為承受水體中全氟化物重要來源。廢水處理廠污泥中的濃度分別為PFOA 101.8±190.3 μg/kg、PFOS 7.8±8.6 μg/kg、PFNA 38.1±70.4 μg/kg及PFBA 16.5±10.9 μg/kg,出流水與污泥中濃度相比,因為長鏈全氟化物傾向於吸附在污泥上,出流水以PFBA為主,污泥以PFOA為主。紡織廠鄰近地下水(15個樣品)皆有測得全氟化物,濃度分別為PFOA 44.3±52.2 ng/L、PFOS 38.1±53.1 ng/L、PFNA 16.7±35.5 ng/L及PFBA 26.6±15.1 ng/L,由於長鏈全氟化物在紡織廠附近地下水相對濃度較高,此累積現象顯示紡織廠曾經在製程中使用長鏈全氟化物。兩個河川底泥樣品中的濃度分別為PFOA 1.4±0.8 μg/kg、PFOS 1.4±0.7 μg/kg、PFNA 1.2±0.5 μg/kg及PFBA 14.6±3.9 μg/kg,顯示廢水與底泥皆以PFBA含量為主,更加確認了紡織業近年來使用短鏈的PFBA作為替代長鏈全氟化物的化學藥劑。
全氟化物在污泥中平均log Koc大小順序為PFOS > PFNA ≒ PFOA > PFBA,與全氟化物的辛醇–水分配係數(log Kow).具有相似趨勢,在底泥中平均log Koc大小順序為PFOS > PFBA > PFNA > PFOA,由於污泥的總有機碳含量(19.4% ~ 38.7%)遠高於底泥總有機碳含量(2.1% ~ 4.2%),顯示總有機碳含量主宰了污泥樣品中全氟化物的分配行為,而底泥樣品中PFBA的吸附高於其它PFAAs,推測底泥中的礦物有可能亦貢獻顯著PFBA吸附量。此外,污泥孔隙水中溶解性有機碳含量越高,污泥樣品回收率越小,推測可能是紡織廢水中的界面活性劑貢獻溶解性有機碳含量,進一步增加了污泥上界面活性劑的含量,並在萃取污泥樣品的過程中,吸附在污泥上的界面活性劑可能與萃取溶劑競爭全氟化物,抑制全氟化物被溶劑萃取,導致污泥樣品回收率下降。
Per- and poly-fluoroalkyl substances (PFAS) are artificial organic chemicals. Due to their water and oil resistant properties, they are widely used in commercial and industrial applications. Water-repellent agents, which might contain PFAS, are used in textile manufacturing process to produce stain and water resistant fabrics. In this study, eight textile factories in Taiwan were monitored with four perfluoralkyl acids (PFAAs) belonging to PFAS. Three long-chain (perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorononanoic acid (PFNA)), and one short-chain (perfluorobutyric acid (PFBA)) perfluoralkyl acids (PFAAs) were selected as the target compounds to investigate their occurrence in the textile wastewater treatment plants and neighboring water bodies. Organic carbon content was also monitored in order to understand its influence on PFAAs distribution between solid-liquid interface and the organic carbon normalized distribution coefficient (Koc) was calculated.
Comparing the PFAAs concentrations in influents (PFOA 40.2±47.6 ng/L, PFOS 5.1±3.0 ng/L, PFNA 8.3±9.0 ng/L, and PFBA 67.6±23.0 ng/L) with those in effluents (PFOA 61.6±87.7 ng/L, PFOS 1.7±1.8 ng/L, PFNA 8.9±15.3 ng/L, and PFBA 81.1±62.2 ng/L), it indicated that PFAAs could not be removed efficiently in the wastewater treatment processes. The textile wastewater effluent was inferred to be the PFAAs pollutant source in receiving waters. The PFAAs concentration in sludge (PFOA 101.8±190.3 μg/kg, PFOS 7.8±8.6 μg/kg, PFNA 38.1±70.4 μg/kg, and PFBA 16.5±10.9 μg/kg) suggested long-chain PFAAs tend to accumulate in sludge due to their high affinity to solid phases. The results shown PFBA was the main composition in the effluents and PFOA was the main composition in sludge.
All 15 groundwater samples were detected with PFAAs (PFOA 44.3±52.2 ng/L, PFOS 38.1±53.1 ng/L, PFNA 16.7±35.5 ng/L, and PFBA 26.6±15.1 ng/L). The long-chain PFAAs accumulated in the groundwater nearby the textile factories, indicating that the textile manufacturers had used long-chain PFAAs in the manufacturing process. The PFAAs concentrations in two sediment samples were PFOA 1.4±0.8 μg/kg, PFOS 1.4±0.7 μg/kg, PFNA 1.2±0.5 μg/kg, and PFBA 14.6±3.9 μg/kg. PFBA was the main PFAAs in both wastewater and sediment samples suggesting it has been used as a substitute in textile manufacturing process.
The order of log Koc was PFOS > PFNA ≒ PFOA > PFBA in sludge and was PFOS > PFBA > PFNA > PFOA in sediment. The trend observed in sludge was corresponded to PFAAs’ octanol-water partition coefficient (log Kow) which was due to higher organic carbon content in sludge (SOC 19.4% ~ 38.7%) than that in sediment (SOC 2.1% ~ 4.2%). SOC strongly affected PFAAs sorption on sludge. The increasing dissolved organic carbons (DOC) in pore water of sludge decreased the recovery rates of sludge samples. Surfactants were speculated to be the major contributor to DOC. The increasing surfactants in pore water increased the sorbed surfactants on sludge. The sorbed surfactants on sludge were speculated to compete PFAAs with extraction solvent during extraction.
Apelberg, B. J., Witter, F. R., Herbstman, J. B., Calafat, A. M., Halden, R. U., Needham, L. L., and Goldman, L. R. Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ Health Perspect, 115(11), 1670-1676. (2007).
Arvaniti, O. S., Ventouri, E. I., Stasinakis, A. S., and Thomaidis, N. S. Occurrence of different classes of perfluorinated compounds in Greek wastewater treatment plants and determination of their solid-water distribution coefficients. J Hazard Mater, 239-240, 24-31. (2012).
Ateia, Mohamed, Maroli, Amith, Tharayil, Nishanth, and Karanfil, Tanju. The overlooked short- and ultrashort-chain poly- and perfluorinated substances: A review. Chemosphere, 220, 866-882. (2019).
Campo, J., Lorenzo, M., Perez, F., Pico, Y., Farre, Ml, and Barcelo, D. Analysis of the presence of perfluoroalkyl substances in water, sediment and biota of the Jucar River (E Spain). Sources, partitioning and relationships with water physical characteristics. Environ Res, 147, 503-512. (2016).
Campo, J., Masia, A., Pico, Y., Farre, M., and Barcelo, D. Distribution and fate of perfluoroalkyl substances in Mediterranean Spanish sewage treatment plants. Sci Total Environ, 472, 912-922. (2014).
Chen, S., Jiao, X. C., Gai, N., Li, X. J., Wang, X. C., Lu, G. H., Piao, H. T., Rao, Z., and Yang, Y. L. Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China. Environ Pollut, 211, 124-131. (2016).
Conder, Jason M, Hoke, Robert A, Wolf, Watze de, Russell, Mark H, and Buck, Robert C. Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds. Environmental science & technology, 42(4), 995-1003. (2008).
Danish EPA. Short chain Polyfluoroalkyl Substances (PFAS). (2015).
Dasu, K., Liu, J., and Lee, L. S. Aerobic soil biodegradation of 8:2 fluorotelomer stearate monoester. Environ Sci Technol, 46(7), 3831-3836. (2012).
Deng, S., Zhang, Q., Nie, Y., Wei, H., Wang, B., Huang, J., Yu, G., and Xing, B. Sorption mechanisms of perfluorinated compounds on carbon nanotubes. Environ Pollut, 168, 138-144. (2012).
Dreyer, A., Matthias, V., Weinberg, I., and Ebinghaus, R. Wet deposition of poly- and perfluorinated compounds in Northern Germany. Environ Pollut, 158(5), 1221-1227. (2010).
Ellis, DA, Martin, JW, Mabury, SA, Hurley, MD, Sulbaek Andersen, MP, and Wallington, TJ. Atmospheric lifetime of fluorotelomer alcohols. Environmental science & technology, 37(17), 3816-3820. (2003).
Ellis, David A, Martin, Jonathan W, De Silva, Amila O, Mabury, Scott A, Hurley, Michael D, Sulbaek Andersen, Mads P, and Wallington, Timothy J. Degradation of fluorotelomer alcohols: a likely atmospheric source of perfluorinated carboxylic acids. Environmental science & technology, 38(12), 3316-3321. (2004).
Eschauzier, C., Raat, K. J., Stuyfzand, P. J., and De Voogt, P. Perfluorinated alkylated acids in groundwater and drinking water: identification, origin and mobility. Sci Total Environ, 458-460, 477-485. (2013).
Filipovic, M., and Berger, U. Are perfluoroalkyl acids in waste water treatment plant effluents the result of primary emissions from the technosphere or of environmental recirculation? Chemosphere, 129, 74-80. (2015).
Giesy, John P., and Kannan, Kurunthachalam. Peer Reviewed: Perfluorochemical Surfactants in the Environment. Environmental science & technology, 36(7), 146A-152A. (2002).
Groffen, T., Eens, M., and Bervoets, L. Do concentrations of perfluoroalkylated acids (PFAAs) in isopods reflect concentrations in soil and songbirds? A study using a distance gradient from a fluorochemical plant. Sci Total Environ, 657, 111-123. (2019).
Guerra, P., Kim, M., Kinsman, L., Ng, T., Alaee, M., and Smyth, S. A. Parameters affecting the formation of perfluoroalkyl acids during wastewater treatment. J Hazard Mater, 272, 148-154. (2014).
Habibullah-Al-Mamun, M., Ahmed, M. K., Raknuzzaman, M., Islam, M. S., Negishi, J., Nakamichi, S., Sekine, M., Tokumura, M., and Masunaga, S. Occurrence and distribution of perfluoroalkyl acids (PFAAs) in surface water and sediment of a tropical coastal area (Bay of Bengal coast, Bangladesh). Sci Total Environ, 571, 1089-1104. (2016).
Hellsing, M. S., Josefsson, S., Hughes, A. V., and Ahrens, L. Sorption of perfluoroalkyl substances to two types of minerals. Chemosphere, 159, 385-391. (2016).
Henry, B. J., Carlin, J. P., Hammerschmidt, J. A., Buck, R. C., Buxton, L. W., Fiedler, H., Seed, J., and Hernandez, O. A critical review of the application of polymer of low concern and regulatory criteria to fluoropolymers. Integr Environ Assess Manag, 14(3), 316-334. (2018).
Higgins, Christopher P, and Luthy, Richard G. Sorption of perfluorinated surfactants on sediments. Environmental science & technology, 40(23), 7251-7256. (2006).
Interstate Technology and Regulatory Council (ITRC). <History and Use of Per- and Polyfluoroalkyl Substances (PFAS).pdf>. (2017).
Li, F., Fang, X., Zhou, Z., Liao, X., Zou, J., Yuan, B., and Sun, W. Adsorption of perfluorinated acids onto soils: Kinetics, isotherms, and influences of soil properties. Sci Total Environ, 649, 504-514. (2019).
Li, F., Su, Q., Zhou, Z., Liao, X., Zou, J., Yuan, B., and Sun, W. Anaerobic biodegradation of 8:2 fluorotelomer alcohol in anaerobic activated sludge: Metabolic products and pathways. Chemosphere, 200, 124-132. (2018).
Lin, A. Y., Panchangam, S. C., and Ciou, P. S. High levels of perfluorochemicals in Taiwan's wastewater treatment plants and downstream rivers pose great risk to local aquatic ecosystems. Chemosphere, 80(10), 1167-1174. (2010).
Lin, A. Y., Panchangam, Sri Chandana, Tsai, Yu-Ting, and Yu, Tsung-Hsien. Occurrence of perfluorinated compounds in the aquatic environment as found in science park effluent, river water, rainwater, sediments, and biotissues. Environmental monitoring and assessment, 186(5), 3265-3275. (2014).
Lindstrom, A. B., Strynar, M. J., and Libelo, E. L. Polyfluorinated compounds: past, present, and future. Environ Sci Technol, 45(19), 7954-7961. (2011).
Liu, B., Zhang, H., Yao, D., Li, J., Xie, L., Wang, X., Wang, Y., Liu, G., and Yang, B. Perfluorinated compounds (PFCs) in the atmosphere of Shenzhen, China: Spatial distribution, sources and health risk assessment. Chemosphere, 138, 511-518. (2015).
Liu, W., Jin, Y., Quan, X., Sasaki, K., Saito, N., Nakayama, S. F., Sato, I., and Tsuda, S. Perfluorosulfonates and perfluorocarboxylates in snow and rain in Dalian, China. Environ Int, 35(4), 737-742. (2009).
Liu, X., Guo, Z., Krebs, K. A., Pope, R. H., and Roache, N. F. Concentrations and trends of perfluorinated chemicals in potential indoor sources from 2007 through 2011 in the US. Chemosphere, 98, 51-57. (2014).
Ma, R., and Shih, K. Perfluorochemicals in wastewater treatment plants and sediments in Hong Kong. Environ Pollut, 158(5), 1354-1362. (2010).
Melzer, D., Rice, N., Depledge, M. H., Henley, W. E., and Galloway, T. S. Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. National Health and Nutrition Examination Survey. Environ Health Perspect, 118(5), 686-692. (2010).
Munoz, G., Labadie, P., Botta, F., Lestremau, F., Lopez, B., Geneste, E., Pardon, P., Devier, M. H., and Budzinski, H. Occurrence survey and spatial distribution of perfluoroalkyl and polyfluoroalkyl surfactants in groundwater, surface water, and sediments from tropical environments. Sci Total Environ, 607-608, 243-252. (2017).
Muralikrishna, Iyyanki V., and Manickam, Valli. Principles and Design of Water Treatment. 209-248. (2017).
Myers, A. L., Crozier, P. W., Helm, P. A., Brimacombe, C., Furdui, V. I., Reiner, E. J., Burniston, D., and Marvin, C. H. Fate, distribution, and contrasting temporal trends of perfluoroalkyl substances (PFASs) in Lake Ontario, Canada. Environ Int, 44, 92-99. (2012).
O'Hagan, D. Understanding organofluorine chemistry. An introduction to the C-F bond. Chem Soc Rev, 37(2), 308-319. (2008).
Olsen, G. W., Burris, J. M., Ehresman, D. J., Froehlich, J. W., Seacat, A. M., Butenhoff, J. L., and Zobel, L. R. Half-life of serum elimination of perfluorooctanesulfonate,perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect, 115(9), 1298-1305. (2007).
Pan, G., Jia, C., Zhao, D., You, C., Chen, H., and Jiang, G. Effect of cationic and anionic surfactants on the sorption and desorption of perfluorooctane sulfonate (PFOS) on natural sediments. Environ Pollut, 157(1), 325-330. (2009).
Pignotti, E., Casas, G., Llorca, M., Tellbuscher, A., Almeida, D., Dinelli, E., Farre, M., and Barcelo, D. Seasonal variations in the occurrence of perfluoroalkyl substances in water, sediment and fish samples from Ebro Delta (Catalonia, Spain). Sci Total Environ, 607-608, 933-943. (2017).
Prevedouros, Konstantinos, Cousins, Ian T, Buck, Robert C, and Korzeniowski, Stephen H. Sources, fate and transport of perfluorocarboxylates. Environmental science & technology, 40(1), 32-44. (2006).
Shivakoti, Binaya Raj, Tanaka, Shuhei, Fujii, Shigeo, Kunacheva, Chinagarn, Boontanon, Suwanna Kitpati, Musirat, Chanatip, Seneviratne, STMLD, and Tanaka, Hiroaki. Occurrences and behavior of perfluorinated compounds (PFCs) in several wastewater treatment plants (WWTPs) in Japan and Thailand. Journal of Environmental Monitoring, 12(6), 1255-1264. (2010).
Stanifer, J. W., Stapleton, H. M., Souma, T., Wittmer, A., Zhao, X., and Boulware, L. E. Perfluorinated Chemicals as Emerging Environmental Threats to Kidney Health: A Scoping Review. Clin J Am Soc Nephrol, 13(10), 1479-1492. (2018).
Steinle-Darling, Eva, and Reinhard, Martin. Nanofiltration for trace organic contaminant removal: structure, solution, and membrane fouling effects on the rejection of perfluorochemicals. Environmental science & technology, 42(14), 5292-5297. (2008).
Wallington, TJ, Hurley, MD, Xia, JDJW, Wuebbles, DJ, Sillman, S, Ito, A, Penner, JE, Ellis, DA, Martin, J, and Mabury, SA. Formation of C7F15COOH (PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8: 2 fluorotelomer alcohol. Environmental science & technology, 40(3), 924-930. (2006).
Wang, F., Liu, C., and Shih, K. Adsorption behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on boehmite. Chemosphere, 89(8), 1009-1014. (2012).
Wang, F., and Shih, K. Adsorption of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on alumina: influence of solution pH and cations. Water Res, 45(9), 2925-2930. (2011).
Wang, Zhanyun, MacLeod, Matthew, Cousins, Ian T., Scheringer, Martin, and Hungerbühler, Konrad. Using COSMOtherm to predict physicochemical properties of poly- and perfluorinated alkyl substances (PFASs). Environmental Chemistry, 8(4), 389. (2011).
Wilhelm, M., Bergmann, S., and Dieter, H. H. Occurrence of perfluorinated compounds (PFCs) in drinking water of North Rhine-Westphalia, Germany and new approach to assess drinking water contamination by shorter-chained C4-C7 PFCs. Int J Hyg Environ Health, 213(3), 224-232. (2010).
World Trade Organization. World Trade Statistical Review. (2018).
Yang, Kai-Hsing, Lin, Yen-Ching, Fang, Meng-Der, Wu, Chung-Hsin, Panchangam, Sri Chandana, Hong, Pui-Kwan Andy, and Lin, Cheng-Fang. Sorption of Perfluorooctanoic Acid (PFOA) onto Sediment in the Presence of Dissolved Natural Organics. Separation Science and Technology, 48(10), 1473-1478. (2013).
Yang, L., Zhu, L., and Liu, Z. Occurrence and partition of perfluorinated compounds in water and sediment from Liao River and Taihu Lake, China. Chemosphere, 83(6), 806-814. (2011).
You, C., Jia, C., and Pan, G. Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment-water interface. Environ Pollut, 158(5), 1343-1347. (2010).
Yu, J., Hu, J., Tanaka, S., and Fujii, S. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in sewage treatment plants. Water Res, 43(9), 2399-2408. (2009).
Zareitalabad, P., Siemens, J., Hamer, M., and Amelung, W. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater - A review on concentrations and distribution coefficients. Chemosphere, 91(6), 725-732. (2013).
Zhang, Chaojie, Yan, Hong, Li, Fei, Hu, Xiang, and Zhou, Qi. Sorption of short- and long-chain perfluoroalkyl surfactants on sewage sludges. Journal of Hazardous Materials, 260, 689-699. (2013).
Zhao, L., Folsom, P. W., Wolstenholme, B. W., Sun, H., Wang, N., and Buck, R. C. 6:2 fluorotelomer alcohol biotransformation in an aerobic river sediment system. Chemosphere, 90(2), 203-209. (2013).
校內:2024-08-24公開