| 研究生: |
任行三 Jan, Hsing-San |
|---|---|
| 論文名稱: |
超臨界二氧化碳逆流柱系統應用於廢水處理 Waste water Treatment through a Countercurrent System driven by Supercritical Carbon Dioxide |
| 指導教授: |
王偉成
Wang, Wei-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 超臨界二氧化碳 、廢水處理 、化學需氧量 、二氧化碳回收 、逆流柱 、計算流體力學 |
| 外文關鍵詞: | Supercritical carbon dioxide, Wastewater treatment, COD, Carbon dioxide recycle, Countercurrent, Computational Fluid Dynamics |
| 相關次數: | 點閱:147 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
油脂及有機物皆為汙染水資源的主因,而現今市場的技術大部分耗時及高成本,如何快速且有效的去除為此研究之主要目標。本研究主要為分離乳化油水及降低電鍍廢水的化學需氧量,根據台灣107年公布之最新環保法規,化學需氧量需降至100 mg / L以下才達到放流水標準。本研究以超臨界二氧化碳逆流柱系統處理電鍍廢水及含油廢水,分別以不同的壓力、溫度、滯留時間下探討其化學需氧量移除效率及除油率,並透過重鉻酸鉀迴流法及卡爾費雪法來進行檢測。此外,本研究也探討帶入模擬軟體算出其量產化後的經濟技術成本分析以每天處理量250噸來計算,所得到的最低建議售價為1.12元(美金),而投資回收期為1.29年,且相對於其他技術而言,此技術為更低成本、更高效率且更為環保。而此實驗流場也將與計算流體模擬軟體進行比對與驗證。
Wastewater treatment has been considered as a major cost not only for the industry but for the society. Current technologies in the market are mostly costly and time consuming. This study proposed a supercritical CO2 (SCCO2)-driven countercurrent system for separating the emulsified oil from water (case 1) and reducing the chemical oxygen demand (COD) from electroplating wastewater (case 2). The effects of the operating parameters such as temperature, pressure and residence time were discussed. In addition, the design of recycling CO2 was developed for saving the CO2 costs. For the consideration of commercialization, the process was scaled-up to 250 tonnes/day and the recommended processing fee was $1.12/tonne for the payback period of 1.29 year, through the process simulation and techno-economic analysis (TEA). Compared to current process, this technology obtains the advantages of low cost, high efficiency and most importantly, environmental friendly. This study also employed the technique of computational fluid dynamics (CFD) for predicting the flow behaviors between the feed (wastewater) and SC-CO2
1. Fay, J.A. Physical processes in the spread of oil on a water surface. in International Oil Spill Conference. 1971. American Petroleum Institute.
2. Effluent Standards, E.P. Administration, Editor. 2016: Taiwan.
3. Korhonen, J.T., et al., Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS applied materials & interfaces, 2011. 3(6): p. 1813-1816.
4. Fomin, Y.D., et al., Thermodynamic properties of supercritical carbon dioxide: Widom and Frenkel lines. Physical Review E, 2015. 91(2): p. 022111.
5. Mohamed, R.S., et al., Extraction of caffeine, theobromine, and cocoa butter from Brazilian cocoa beans using supercritical CO2 and ethane. Industrial & engineering chemistry research, 2002. 41(26): p. 6751-6758.
6. Reverchon, E., Supercritical fluid extraction and fractionation of essential oils and related products. The Journal of Supercritical Fluids, 1997. 10(1): p. 1-37.
7. Liu, W.-w., et al., An environmentally friendly approach for contaminants removal using supercritical CO2 for remanufacturing industry. Applied Surface Science, 2014. 292: p. 142-148.
8. Shahid Hussain, Enhanced Oil Recovery Using Supercritical Carbon Dioxide With and Without Co-solvents. International Journal of Petroleum and Gas Engineering, 2014. 2: p. 1-12.
9. Díaz-Reinoso, B., et al., Supercritical CO2 extraction and purification of compounds with antioxidant activity. Journal of agricultural and food chemistry, 2006. 54(7): p. 2441-2469.
10. Shi, Q., L. Jing, and W. Qiao, Solubility of n-alkanes in supercritical CO2 at diverse temperature and pressure. Journal of CO2 Utilization, 2015. 9: p. 29-38.
11. Wang, Z., et al., Determination of water solubility in supercritical CO2 from 313.15 to 473.15 K and from 10 to 50 MPa by in-situ quantitative Raman spectroscopy. Fluid Phase Equilibria, 2018. 476: p. 170-178.
12. Bobbo, S., et al., Solubility of CO2 in commercial POE oils with different standard viscosity. 2008.
13. Antonie, P. and C.G. Pereira, Solubility of functional compounds in supercritical CO2: Data evaluation and modelling. Journal of Food Engineering, 2019. 245: p. 131-138.
14. Terada, A., et al., Cold-pressed yuzu oil fractionation using countercurrent supercritical CO2 extraction column. Separation and Purification Technology, 2010. 71(1): p. 107-113.
15. Yasumoto, S., et al., Supercritical CO2-mediated countercurrent separation of essential oil and seed oil. The Journal of Supercritical Fluids, 2015. 104: p. 104-111.
16. Solana, M., et al., Recovery of butanol by counter-current carbon dioxide fractionation with its potential application to butanol fermentation. Materials, 2016. 9(7): p. 530.
17. Solana, M., et al., Counter-current carbon dioxide extraction of fat from soy skim. The Journal of Supercritical Fluids, 2016. 113: p. 106-111.
18. Hosny, A.Y., Separating oil from oil-water emulsions by electroflotation technique. Separations Technology, 1996. 6(1): p. 9-17.
19. Calcagnile, P., et al., Magnetically driven floating foams for the removal of oil contaminants from water. ACS nano, 2012. 6(6): p. 5413-5419.
20. Freire, D., M. Cammarota, and G. Sant'Anna, Biological treatment of oil field wastewater in a sequencing batch reactor. Environmental Technology, 2001. 22(10): p. 1125-1135.
21. Cao, C., et al., Robust fluorine-free superhydrophobic PDMS–ormosil@ fabrics for highly effective self-cleaning and efficient oil–water separation. Journal of Materials Chemistry A, 2016. 4(31): p. 12179-12187.
22. Akin, O., K. Araus, and F. Temelli, Separation of lipid mixtures using a coupled supercritical CO2–membrane technology system. Separation and Purification Technology, 2015. 156: p. 691-698.
23. Padaki, M., et al., Membrane technology enhancement in oil–water separation. A review. Desalination, 2015. 357: p. 197-207.
24. Agency, E.P., Method for detecting chemical oxygen demand in water - potassium dichromate reflux method. 2019: Taiwan.
25. Agency, E.P., Method for detecting oil in water - Extraction weight method. 2018: Taiwan.
26. ANSYS official website. 2019 [cited 2019 7.3]; Available from: https://www.ansys.com/zh-tw.
27. Sekerci-Cetin, M., et al., Numerical study of the dissolution of carbon dioxide in an ionic liquid. Chemical Engineering Science, 2016. 147: p. 173-179.
28. Van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method. Journal of computational Physics, 1979. 32(1): p. 101-136.
29. Youngs, D.L., Time-dependent multi-material flow with large fluid distortion. Numerical methods for fluid dynamics, 1982.
30. ASPENTECH official website. 2019 [cited 2019 7.3]; Available from: https://www.aspentech.com/en/products/engineering/aspen-plus.
31. Zhou, Z., et al., Numerical simulation of supercritical carbon dioxide jet at well bottom. Applied Thermal Engineering, 2017. 121: p. 210-217.
32. Hanjalic, K., Closure models for incompressible turbulent flows. Lecture Notes at Von Kármán Institute, 2004. 75.
33. Torkmahalleh, M.A., U. Kaibaldiyeva, and A. Kadyrbayeva. A new computer model for the simulation of particulate matter formation from heated cooking oils using Aspen Plus. in Building Simulation. 2017. Springer.
34. Span, R. and W. Wagner, A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1100 K at pressures up to 800 MPa. Journal of physical and chemical reference data, 1996. 25(6): p. 1509-1596.
35. Colina, C., et al., Thermal properties of supercritical carbon dioxide by Monte Carlo simulations. Molecular Simulation, 2003. 29(6-7): p. 405-412.
36. resources, V., Oily wastewater treatment method. 2017, Daily headlines: China.
37. Ikushima, Y., et al., Activation of a lipase triggered by interactions with supercritical carbon dioxide in the near-critical region. The Journal of Physical Chemistry, 1995. 99(22): p. 8941-8944.
38. Ikushima, Y., N. Saito, and M. Arai, Supercritical carbon dioxide as reaction medium: examination of its solvent effects in the near-critical region. The Journal of Physical Chemistry, 1992. 96(5): p. 2293-2297.
39. Ogbeide, O., P. Charpentier, and M. Ray, Extraction of algae oil in supercritical co2 using a soybean surfactant. 2016.
40. Peters, M.S., et al., Plant design and economics for chemical engineers. Vol. 4. 1968: McGraw-Hill New York.
41. Ma Weiyang, X.H., Guo Chengcong. Calculation and evaluation of solar energy reserves in Taiwan. 2017 [cited 2019 7.4]; Available from: http://eip.iner.gov.tw/msn.aspx?datatype=YW5hbHlzaXM=&id=NTg=.
42. Max, P. and D.T. Klaus, Plant design and economics for chemical engineering. 1980, Ciudad de La Habana: Edición Revolucionaria. p. 150-215.
43. Yard, S., Developments of the payback method. International journal of production economics, 2000. 67(2): p. 155-167.
44. Azimi, H. and D. Jahani, The experimental and numerical relation between the solubility, diffusivity and bubble nucleation of supercritical CO 2 in Polystyrene via visual observation apparatus. The Journal of Supercritical Fluids, 2018. 139: p. 30-37.