| 研究生: |
謝佳諭 Hsieh, Chia-Yu |
|---|---|
| 論文名稱: |
利用多重影像匹配獲取測量車影像點位之物空間坐標 Determination of Object Point Coordinates by MMS Image Sequences Using Multiple Image Matching |
| 指導教授: |
曾義星
Tseng, Yi-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 測量車影像序列 、多影像匹配 、物空間匹配 、多視窗影像匹配 |
| 外文關鍵詞: | MMS, image sequences, Multi-image matching, matching in object space, multiple windows matching |
| 相關次數: | 點閱:152 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
測量車影像序列富含測量車行經路線帶狀的空間資訊,配合測量車之定位、定向系統,每張影像之內外方位可於獲取影像後,加上率定資料求得,因此可透過多影像匹配以前方交會計算應用者感興趣之地物的三維坐標,有效率地蒐集空間資訊。透過影像像點、投影中心及物點的共線關係,重疊影像間的共軛像點可透過共線關係獲取該點位之物空間坐標。利用影像匹配進行共軛點的獲取是比較經濟的做法,尤其測量車影像序列這樣龐大的資料量。但測量車影像存在尺度變化、視角不同及遮蔽問題可能影響點位的正確匹配,因此本研究將影像匹配從常見的像空間匹配轉換至物空間進行,配合假設面的建立改善尺度變化及視角不同產生的問題。
由於測量車影像序列於行進中拍攝,根據物體與相機的距離遠近,在影像中有前景及背景的分別,當前景地物遮住了背景地物,則產生遮蔽問題。本研究發展影像挑選機制,確保用以匹配的影像皆包含該目標點位,將遭遮蔽的影像過濾。另外,遭前景遮蔽的背景隨著拍攝位置的不同而變化,變化越劇烈的背景資訊,亦對點位的正確匹配帶來影響,因此本研究透過視窗分割,減輕背景對影像匹配的不良影響。
由實驗結果顯示,本研究提出的方法對街道上之特徵明顯的點位,幾乎可以獲得良好之匹配結果,其成功匹配率大約可達80%至90%,而所得之點位物空間坐標,與驗證場上控制點之地面測量坐標比較,所求坐標可達約10公分的精度,約50公分的準確度,足以應付一般使用者的需求及大比例尺之地理資訊系統的資料建置,若提升定位及定向系統的穩定性,將可使準確度更理想。
Image sequences acquired with a Mobile Mapping System (MMS) contain rich information along the trajectory. The coordinates of interested points can be determined by space forward intersection of the images, whose interior and exterior orientation are determined from the navigation and calibration data. Hence the acquisition of spatial data is much efficient. The basic idea to obtain the 3D coordinates of conjugate points from overlap images is to rebuild the geometric relation between images. Obtaining conjugate points of image sequences by image matching is much more efficient than manual measurement. However the factors of scale variations, different field of view, and occlusion may result in incorrect matching. In this research, image matching in object space with virtual surface is proposed to overcome the problems of matching in image space.
Due to the image sequences are acquired during the vehicle moving, the distance variations from objects to cameras cause differences between foreground and background in images. Occlusion problems also cause difficulties of image matching. The process to filter out occluded images is proposed, and the remaining useful images are kept for multiple image matching. In addition, multiple windows matching, in which the target point is located in different positions, is developed to ease the problems caused by complex backgrounds.
The test results of the experiments show the proposed method can deliver correct matching results good to about 80% to 90%. The determined coordinates are about 10 cm in precision, and about 50 cm in accuracy. The quality of point determination is good enough for general applications of GIS data acquisition. Accuracy can be improved, if the positioning and orientation system of the MMS can be improved.
王嵐威,1995。以多項式取代共線式在SPOT 立體像對匹配及前方交會上之應用,碩士論文, 國立成功大學,台南。
徐偉城,1999。 空照彩色立體像對中人工建築物萃取之研究,碩士論文,國立中央大學,桃園。
蔡函芳,1999。多重影像匹配於房屋邊緣線三維定位,碩士論文,國立中央大學,桃園。
Bethel, J., 1986. The DSR11 image correlator. In Proc. ACSM/ASPRS Ann. Convention, 4, 44-49.
Cogan, L., and Hunter, D., 1984. Kern DSR1/DSR11: DTM Erfassung und der Kern Korrelator, Kern & Co AG, Aarau.
Coetsee, J., Brown, A. and Bossler, J., 1994. GIS data collection using the GPSVan supported by a GPS/inertial mapping system. Proceedings of IONGPS-94 7th International Technical Meeting of the Satellite Division of the Institute of Navigation, Salt Lake City, Utah. Part 1: 85–93.
Ebner, H. and C. Heipke, 1988. Integration of Digital Image Matching and Object Surface Reconstruction, International Archives of Photogrammetry and Remote Sensing, 27(B3):534-545.
El-Sheimy, N., 1996. The Development of VISAT – A Mobile Survey System for GIS Applications, (Ph.D. thesis), UCGE Report No. 20101, Department of Geomatics Engineering, the University of Calgary.
Faugeras, O. and K. Price, 1981. Semantic Description of Aerial Images Using Stochastic Labelling, IEEE Transactions on Pattern Analysis and Machine Intelligence, 3(6):638-642.
Gruen, & Zhang., 2003. Automatic DTM Generation from TLS data. Optical 3-D Measurement Techniques VI, I, 93-105.
Gyer, M. 1981. Automated stereo photogrammetric terrain elevation extraction. Tech. Report, Gyer and Saliba, Inc.
Haralick, R. and L. Shapiro, 1993. Computer and Robot Vision, Vol. II, Addison-Wesley: Reading, MA.
Helava, U., 1988. Object-space Least-squares Correlation, Photogrammetric Engineering and Remote Sensing, 54(6):711-714.
Lapucha, D., 1990. Precise GPS/INS Positioning for Highway Inventory System. M.Sc Thesis, Department of Geomatics Engineering, The University of Calgary, Calgary, Canada
McGlone, J. C., 2004. Manual of photogrammetry (fifth ed.): American Society for Photogrammetry amd Remote Sensing.
Paparoditis, N., C. Thom, and H. Jibrini, 2000. Surface Reconstruction in Urban Areas from Multiple Views of Aerial Digital Frame Cameras, International Archives of Photogrammetry and Remote Sensing, 33(B3):43-50.
Pollefeys, M., R. Koch, M. Vergauwen, and L. van Gool, 2000. Automated Reconstruction of 3D Scenes from Sequences of Images, ISPRS Journal of Photogrammetry and Remote Sensing, 55(4):251-267.
Schenk, T., 1999. Digital Photogrammetry, TerraScience: Laurelville, OH.
Shapiro, L. and R. Haralick, 1981. Structural Description and Inexact Matching, IEEE Transactions on Pattern Analysis and Machine Intelligence 3:514-519.
Wiman, H., 1998. Automatic generation of digital surface models through matching in object space. Photogrammetric Record, 16(91), 83-91.
Wrobel, B., 1987. Facet Stereo Vision (FAST Vision) – A New Approach to Computer Stereo Vision and to Digital Photogrammetry, Proceedings ISPRS Intercommission Workshop on Fast Processing of Photogrammetric Data, Interlaken, Switzerland, pp. 231-258.