| 研究生: |
周心韻 Chou, Hsin-Yun |
|---|---|
| 論文名稱: |
考量新店溪流域整體水利設施營運與環境流量目標之最佳營運策略 The Basin-scale Optimal Operating Strategies for Considering Human and Environmental Water Requirements with an Application to Hsintien Creek Basin, Taiwan |
| 指導教授: |
蕭政宗
Shiau, Jenq-Tzong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 天然流制 、環境流量 、水文指標 、水資源營運策略 、新店溪流域 |
| 外文關鍵詞: | natural flow regime, environmental flow, hydrological indicators, water resources management strategy, Hsintien Creek basin |
| 相關次數: | 點閱:158 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
水利設施的營運可以提供人類用水方面如供水、發電及防洪等具經濟效益的需求,但水利設施攔蓄及引取河川流量不僅改變河川的天然流制,甚至影響水域生態環境,因此如何設計兼顧人類需求且維護水域生態環境的水資源管理策略是目前重要議題之一。近年來多數的水資源管理策略會在水利設施下游維持一定程度的環境流量來維護水域生態環境,目前普遍認為環境流量的設計除了須考慮量的大小外,亦要具有一定的變異性,本研究將設計多層次環境流量來達到此目的。本研究將以新店溪流域為研究區域,新店溪流域目前有七座大小型堰壩供應大台北地區生活用水,並兼具水力發電及防洪等功能,雖然該流域之部分水利設施有維持固定的環境放流量,但皆為個別考量,而非流域性整體策略。本文研究重點為綜觀整體流域內各河段受堰壩引水的影響,在兼顧用水、發電、防洪的效益下,搭配各項人類用水指標(供水指標、發電指標及防洪指標)與流域天然流制指標(洪水頻率指標、年最小7日流量指標、月流量歷線指標及流量變異係數指標),以尋求減緩各河段受改變程度的最佳整體營運策略。經應用於北台灣之新店溪流域,本文比較無保留環境流量方案、現況方案及本研究所計算的最佳方案,分析結果顯示本文所建議之整體最佳策略相較其他方案對於各河段受影響的流制有甚大的改善,惟人類用水效益略為降低。
Water-resources facilities operation provides economic reward for human society, but may alter natural flow regime and deteriorate riverine health. It becomes a challenge task of water-resources management to find a strategy simultaneously meeting human and environmental water needs. In this study, a multi-level environmental flow is incorporated into a basin-scale simulation model and applied to Hsintien Creek basin located in northern Taiwan to achieve this goal. Two types of indicators comprise human indicators (water-supply, hydropower production, and flood peak attenuation) and environmental indicators (frequency of small floods, annual minimum 7-day flow, monthly flow hydrograph, and coefficient of variation for daily flow) are used to derive the optimal operating strategy. The results show that the current scenario is slightly better than the no environmental flow scenario. The optimal scenario has great improvements in altered natural flow regime, but at a cost of deterioration of human indicators.
Acreman M., Aldrick J., Binnie C., Black A., Cowx I., Dawson H., Dunbar M., Extence C., Hannaford J., Harby A., Holmes N., Jarritt N., Old G., Peirson G., Webb J., Wood P. (2009). Environmental flows from dams: the water framework directive. Proceedings of the Institution of Civil Engineers-Engineering Sustainability, 162(1), 13-22
Afshar A., Mariño M. A., Saadatpour M., Afshar A. (2010). Fuzzy TOPSIS multi-criteria decision analysis applied to Karun Reservoirs System. Water Resources Management, 25(2), 545-563
Arthington A. H., Bunn S. E., Poff N. L., Naiman R. J. (2006). The challenge of providing environmental flow rules to sustain river ecosystems. Ecological Applications, 16(4), 1311-1318
Arthington A. H., Naiman R. J., McClain M. E., Nilsson C. (2010). Preserving the biodiversity and ecological services of rivers: New challenges and research opportunities. Freshwater Biology, 55(1), 1-16
Arthington A. H., Tharme R. E., Brizga S. O., Pusey B. J., Kennard M. J. (2004). Environmental flow assessment with emphasis on holistic methodologies. Food and Agriculture Organization of the United Nations, 2, 37-66
Azmi M., Araghinejad S., Sarmadi F. (2011). A national-scale assessment of agricultural development feasibility using multi-criteria decision making (MCDM) approaches. Natural and Applied Sciences, 5(4), 379-391
Batalla R. J., Gómez C. M., Kondolf G. M. (2004). Reservoir-induced hydrological changes in the Ebro River basin (NE Spain). Journal of Hydrology, 290(1-2), 117-136
Bednarek A. T., Hart D. D. (2005). Modifying dam operations to restore rivers: Ecological responses to Tennessee river dam mitigation. Ecological Applications, 15(3), 997-1008
Belmar O., Velasco J., Gutierrez-Canovas C., Mellado-Diaz A., Millan A., Wood P. J. (2013). The influence of natural flow regimes on macroinvertebrate assemblages in a semiarid Mediterranean basin. Ecohydrology, 6(3), 363-379
Bunn S. E., Arthington A. H. (2002). Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management, 30(4), 492-507
Cardwell H., Jager H. I., Sale M. J. (1996). Designing instream flows to satisfy fish and human water needs. Journal of Water Resources Planning and Management, 122(5), 356-363
Dunbar M. J., Acreman M., Kirk S. (2004). Environmental flow setting in England and Wales: Strategies for managing abstraction in catchments. Water and Environment Journal, 18(1), 5-10
Dyson M., Bergkamp G., Scanlon J. (2003). Flow: The Essentials of Environmental Flows, International Union for Conservation of Nature and Natural Resources (IUCN), ISBN 2-8317-0725-0
FitzHugh T. W. (2013). EFCAM: a method for assessing alteration of environmental flow components. River Research and Applications, DOI 10.1002/rra.2681 (in press)
Homa E. S., Brown C., McGarigal K., Compton B. W., Jackson S. D. (2013). Estimating hydrologic alteration from basin characteristics in Massachusetts. Journal of Hydrology, 503, 196-208
Homa E. S., Vogel R. M., Smith M. P., Apse C. D., Huber-Lee A., Sieber j. (2005). An optimization approach for balancing human and ecological flow needs. American Society of Civil Engineers, Impacts of Global Climate Change, 1-12
Hughes D. A., Mallory S. J. L. (2008). Including environmental flow requirements as part of real‐time water resource management. River Research and Applications, 24(6), 852-861
Hughes D. A., O'Keeffe J., Smakhtin V., King J. (1997). Development of an operating rule model to simulate time series of reservoir releases for instream flow requirements. Water SA, 23(1), 21-30
Hughes D. A., Ziervogel G. (1998). The inclusion of operating rules in a daily reservoir simulation model to determine ecological reserve releases for river maintenance. Water SA, 24(4), 293-302
Hughes F. M., Rood S. B. (2003). Allocation of river flows for restoration of floodplain forest ecosystems: A review of approaches and their applicability in Europe. Environmental Management, 32(1), 12-33
Hwang C. L., Yoon K. (1981). Multiple Attribute Decision Making, Springer, ISBN 978-3-540-10558-9
Lee S., Kim J., Hur J. W. (2012). Assessment of ecological flow rate by flow duration and environmental management class in the Geum River, Korea. Environmental Earth Sciences, 68(4), 1107-1118
Maingi J. K., Marsh S. E. (2002). Quantifying hydrologic impacts following dam construction along the Tana River, Kenya. Journal of Arid Environments, 50(1), 53-79
Mathews R., Richter B. D. (2007). Application of the indicators of hydrologic alteration software in environmental flow setting. Journal of The American Water Resources Association, 43(6), 1400-1413
Monk W. A., Wood P. J., Hannah D. M., Wilson D. A. (2007). Selection of river flow indices for the assessment of hydroecological change. River Research and Applications, 23(1), 113-122
Munoz-Hernandez A., Mayer A. S., Watkins D. W. (2011). Integrated hydrologic-economic-institutional model of environmental flow strategies for Rio Yaqui Basin, Sonora, Mexico. Journal of Water Resources Planning and Management, 137(2), 227-237
Nilsson C., Reidy C. A., Dynesius M., Revenga C. (2005). Fragmentation and flow regulation of the world's large river systems. Science, 308(5720), 405-408
Olden Julian D., Poff N. L. (2003). Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Research and Applications, 19(2), 101-121
Palau A., Alcazar J. (2012). The basic flow method for incorporating flow variability in environmental flows. River Research and Applications, 28(1), 93-102
Peñas F. J., Juanes J. A., Álvarez-Cabria M., Álvarez C., García A., Puente A., Barquín J. (2013). Integration of hydrological and habitat simulation methods to define minimum environmental flows at the basin scale. Water and Environment Journal, DOI 10.1111/wej.12030 (in press)
Petts G. E. (2009). Instream flow science for sustainable river management. Journal of The American Water Resources Association, 45(5), 1071-1086
Poff N. L. (2009). Managing for variability to sustain freshwater ecosystems. Journal of Water Resources Planning and Management, 135(1), 1-4
Poff N. L., Allan J. D., Bain M. B., Karr J. R., Prestegaard K. L., Richter B. D., Sparks R. E., Stromberg J. C. (1997). The natural flow regime. Bioscience, 47(11), 769-784
Poff N. L., Richter B. D., Arthington A. H., Bunn S. E., Naiman R. J., Kendy E., Acreman M., Apse C., Bledsoe B. P., Freeman M. C., Henriksen J., Jacobson R. B., Kennen J. G., Merritt D. M., O'Keeffe J. H., Olden J. D., Rogers K., Tharme R. E., Warner A. (2010). The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards. Freshwater Biology, 55(1), 147-170
Poff N. L., Ward J. V. (1989). Implications of streamflow variability and predictability for lotic community structure : A regional-analysis of streamflow patterns. Canadian Journal of Fisheries and Aquatic Sciences, 46(10), 1805-1818
Power M. E., Sun A., Parker G., Dietrich W. E., Wootton J. T. (1995). Hydraulic food-chain models. Bioscience, 45(3), 159-167
Richter B. D. (2010). Re-thinking environmental flows: From allocations and reserves to sustainability boundaries. River Research and Applications, 26(8),1052-1063
Richter B. D., Baumgartner J. V., Braun D. P., Powell J. (1998). A spatial assessment of hydrologic alteration within a river network. Regulated Rivers-Research & Management, 14(4), 329-340
Richter B. D., Baumgartner J. V., Powell J., Braun D. P. (1996). A method for assessing hydrologic alteration within ecosystems. Conservation Biology, 10(4), 1163-1174
Richter B. D., Baumgartner J. V., Wigington R., Braun D. P. (1997). How much water does a river need? Freshwater Biology, 37(1), 231-249
Richter B. D., Davis M. M., Apse C., Konrad C. (2012). A presumptive standard for environmental flow protection. River Research and Applications, 28(8), 1312-1321
Richter B. D., Thomas G. A. (2007). Restoring environmental flows by modifying dam operations. Ecology and Society, 12(1)
Richter B. D., Warner A. T., Meyer J. L., Lutz K. (2006). A collaborative and adaptive process for developing environmental flow recommendations. River Research and Applications, 22(3), 297-318
Sale M. J., Brill E. D., Herricks E. E. (1982). An approach to optimizing reservoir operation for downstream aquatic resources. Water Resources Research, 18(4), 705-712
Sanderson J. S., Rowan N., Wilding T., Bledsoe B. P., Miller W. J., Poff N. L. (2012). Getting to scale with environmental flow assessment: The watershed flow evaluation tool. River Research and Applications, 28(9), 1369-1377
Shiau J. T., Wu F. C. (2004). Assessment of hydrologic alterations caused by Chi-Chi diversion weir in Chou-Shui Creek, Taiwan: Opportunities for restoring natural flow conditions. River Research and Applications, 20(4), 401-412
Shiau J. T., Wu F. C. (2009). Regionalization of natural flow regime: Application to environmental flow optimization at ungauged sites. River Research and Applications, 25(9), 1071-1089
Suen J. P. (2011). Determining the ecological flow regime for existing reservoir operation. Water Resources Management, 25(3), 817-835
Suen J. P., Eheart J. W. (2006). Reservoir management to balance ecosystem and human needs: Incorporating the paradigm of the ecological flow regime. Water Resources Research, 42(3)
Sun T., Yang Z. F., Shen Z. Y., Zhao R. (2012). Ecological water requirements for the source region of China's Yangtze River under a range of ecological management objectives. Water International, 37(3), 236-252
Tennant D. L. (1976). Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries, 1(4), 6-10
Tharme R. E. (2003). A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers. River Research and Applications, 19(5-6), 397-441
Ty T. V., Sunada K., Ichikawa Y. (2011). A spatial impact assessment of human-induced intervention on hydrological regimes: A case study in the upper Srepok River basin, Central Highlands of Vietnam. International Journal of River Basin Management, 9(2), 103-116
Wu W., Xu Z. X., Liu X. C. (2012). Impact of Baojixia water diversion works on the hydrologic regime in the Wei River basin. Procedia Environmental Sciences, 13, 1653-1662
Yang R. R., Cui B. S. (2012). A wetland network design for water allocation based on environmental flow requirements. Clean-Soil, Air, Water, 40(10), 1047-1056
Yang Z. F., Yan Y., Liu Q. (2012). Assessment of the flow regime alterations in the Lower Yellow River, China. Ecological Informatics, 10, 56-64
Yin X. A., Yang Z. F. (2011). Development of a coupled reservoir operation and water diversion model: Balancing human and environmental flow requirements. Ecological Modelling, 222(2), 224-231
Yin X., Yang Z., Yang W., Zhao Y., Chen H. (2010). Optimized reservoir operation to balance human and riverine ecosystem needs: Model development, and a case study for the Tanghe reservoir, Tang river basin, China. Hydrological Processes, 24(4), 461-471
Zolezzi G., Bellin A., Bruno M. C., Maiolini B., Siviglia A. (2009). Assessing hydrological alterations at multiple temporal scales: Adige River, Italy. Water Resources Research, 45(12)
吳富春, 胡通哲, 李國昇, 李德旺 (1998). 應用棲地模式估算台灣河川之生態流量. 第九屆水利工程研討會, C, 21-28
汪靜明 (2001). 河川治理與管理的生態觀. 水資源管理季刊, 3(4), 30-39
蕭政宗, 吳富春 (2004). 集集攔河堰最佳引水與河川生態流量之研究. 第十四屆水利工程研討會, C, 1-8
蕭政宗, 吳富春 (2006). 以遺傳演算法探討考量河川自然流量變化之最佳攔河堰生態流量. 第十五屆水利工程研討會, H, 88-95
蕭政宗, 吳富春 (2008). 新店溪流域天然流制改變之評估. 第十七屆水利工程研討會, G, 32-39
蕭政宗, 吳富春 (2009). 多層次環境流量設定之探討. 第十八屆水利工程研討會, E, 11-18
經濟部水利署 (2011). 直潭壩水庫運用要點.
經濟部水利署 (2011). 阿玉壩水庫運用要點.
經濟部水利署 (2011). 青潭堰水庫運用要點.
經濟部水利署 (2011). 桂山壩水庫運用要點.
經濟部水利署 (2011). 粗坑壩水庫運用要點.
經濟部水利署 (2011). 羅好壩水庫運用要點.
臺北翡翠水庫管理局 (2011). 臺北翡翠水庫運用要點.