簡易檢索 / 詳目顯示

研究生: 謝峰銘
Hsieh, Feng-Ming
論文名稱: 新穎性多彩膽固醇液晶與功能性材料之合成及特性研究
Synthesis and Characterization of Novel Color-tunable Cholesteric Liquid Crystals and Functional Materials
指導教授: 劉瑞祥
Liu, Jui-Hsiang
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 98
語文別: 英文
論文頁數: 148
中文關鍵詞: 膽固醇液晶高分子光致變性液向型膽固醇液晶選擇性光反射自組合銀奈米材料
外文關鍵詞: cholesteric liquid crystals, polymers, photochromic, lyotropic, selective light reflection, self-assembled, silver nanomaterials.
相關次數: 點閱:115下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中設計及合成各種不同新穎性功能性自組合膽固醇液晶材料,包括(1)含膽固醇基團的側鏈型液晶高分子;(2)具有光致變性的特殊液向型膽固醇液晶材料;(3)轉印膽固醇液晶分子排列的非對掌性高分子網狀結構及(4)含有高螺旋扭轉能力對掌性鏈段的主鏈型液晶高分子。探討對掌效應、溶劑效應、溫度致變性或光致變性分別對於不同膽固醇液晶材料的選擇性光反射之影響,並研究其顏色可調變的特性。此外,利用簡便的方式以功能性高分子如膽固醇液晶高分子或兩性雙團聯式共聚高分子來製備不同形式的銀奈米材料,包括高分子-奈米銀複合材料、包埋奈米銀顆粒的高分子纖維及銀奈米線,並探討其性質。對於實驗中所合成的單體及高分子材料利用紅外光光譜儀(FT-IR)、核磁共振光譜儀(1H NMR)及元素分析(EA)來鑑定其分子化學結構。而各功能性材料的熱性質與光學特性則利用差式掃描熱分析儀(DSC)、熱重分析儀(TGA)、紫外光-可見光光譜儀(UV-Vis)、X光繞射儀(XRD)及偏光顯微鏡(POM)來分析。銀奈米材料的型態則藉由掃描式電子顯微鏡(SEM)及穿透式電子顯微鏡(TEM)觀察。

    本論文共包含五個部份。第一部份中,合成新穎性含膽固醇基團的單體並以不同比例與液晶單體共聚合;對於單體混合系統與共聚合系統,當膽固醇單體含量分別為10~25及15~75 mol%時,具有可見光的選擇性光反射,且隨著溫度增加而藍位移;而利用在不同溫度下對高分子反射薄膜作急速冷卻可得到穩定的色彩薄膜。第二部份中,首度發現特殊的液向型膽固醇液晶系統於所合成的光致變性cinnamoyl液晶單體在適當溶劑中,對於溶劑或蒸氣的感測應用上可顯示不同的光學特性;此外,對於所表現的可調變之選擇性光反射,升高溫度會造成可逆的波長藍位移;而UV光照射則會導致分子異構化引發不可逆的藍位移。第三部份中,我們構想出利用非對掌性及非液晶的高分子網狀結構誘導膽固醇液晶的方式,並顯示出選擇性光反射的光學特性;利用導入不同折射率的向列型液晶於此網狀結構中可達到多彩反射的效果。第四部份中,利用縮合劑p-TsCl/Py/DMF進行含有高HTP的對掌性鏈段及液晶元結構的聚縮合反應,合成新穎性主鏈型膽固醇聚酯,並利用in situ熱還原反應製備含有5~10 nm奈米銀顆粒於膽固醇液晶高分子中的奈米複合材料;各材料皆表現出高的熱穩定性及寬廣的膽固醇液晶相範圍;而奈米銀顆粒的存在會使得膽固醇液晶聚酯的選擇性光反射發生紅位移並提高對溫度效應的影響;此新穎性液晶高分子-奈米銀複合材料可能在異方性導電性或光學特性具有高度應用性。第五部份中,利用ATRP及水解程序所合成的兩性雙團聯式共聚高分子PMMA-b-PMAA形成逆微胞來合成奈米銀顆粒,並配合氧化鋁模板進一步製備包埋奈米銀顆粒的高分子纖維及銀奈米線,可應用在奈米電子元件上的連接裝置。

    The novel functional materials based on self-assembled cholesteric liquid crystals in various types, including (1) side-chain cholesteric liquid crystalline polymers containing cholesteryl pendant groups; (2) photochromic cholesteric liquid crystalline monomers with unconventional lyotropic properties; (3) cholesteric liquid crystalline-imprinted architectures on achiral non-liquid crystalline polymer networks; and (4) main-chain cholesteric liquid crystalline polyesters containing high HTP isosorbide segments, were designed and synthesized. The chiral effect, solvent effect, thermochromic effect, and photochromic effect on the selectively reflective colors of various cholesteric liquid crystalline materials were explored, and the color-tunable properties of these functional materials were investigated. In addition, the characterizations of the nanomaterials in the forms of polymer-silver nanocomposites, silver nanoparticle-embedded nanofibers and silver nanowires which were fabricated using convenient methods in functional polymers such as cholesteric liquid crystalline polyester and amphiphilic diblock copolymer were studied. The chemical structures of the synthesized monomers and polymers were identified using FT-IR, 1H NMR, and elemental analyses. The characterizations of thermal and optical properties of these functional materials were analyzed using DSC, TGA, UV-Vis, XRD, and POM. The morphologies of nanomaterials were observed from SEM and TEM analysis.

    This thesis consists of five parts: In Part I, a new cholesteryl-containing liquid crystalline monomer was synthesized and copolymerized with an achiral liquid crystalline monomer in various molar ratios. The selective reflection in the region of visible light could be observed at cholesteric liquid crystal phase for monomer mixtures and copolymers containing about 10-25 mol% and 15-75 mol% cholesteryl units, respectively. As the temperature increased, the variation of reflection wavelength for both systems revealed blue-shifts. Stable colorful reflective patterns or color recordings can be obtained through quenching the copolymers from various temperatures. In Part II, the unique lyotropic properties of cholesteric liquid crystals were first discovered for the synthesized monomers containing a functional photochromic cinnamoyl group, which were mixed with proper solvents in the suitable ratio. It is believed that the novel materials have great potential in application for the sensor of solvent or solvent vapors. In addition, the tunable colorful selective reflection properties of lyotropic cholesteric liquid crystals exhibit a reversible blue shift with increasing the temperature, and an irreversible blue shift upon around 20 min of UV exposure. In Part III, we conceived a new methodology for preparing achiral non-liquid crystalline polymer networks with the performance to induce cholesteric liquid crystals with selective light reflection from flash nematic liquid crystals in the absence of chiral dopants. In addition, the tunable colorful patterns can be achieved by refilling the nematic liquid crystals with various refractive indices into the polymer networks. In Part IV, new main-chain cholesteric liquid crystalline polyesters containing high HTP isosorbide segments were synthesized by direct polycondensation using p-TsCl/Py/DMF as a condensing agent. The cholesteric liquid crystalline polyester composites containing 5~10 nm of silver nanoparticles was prepared by in situ thermal reduction of silver complex. The cholesteric liquid crystalline polyesters and nanocomposite exhibited high thermal stability and wide temperature range of cholesteric liquid crystal phase. The presence of 1 wt% silver nanoparticles in cholesteric liquid crystalline polyesters caused a red shift of selective light reflection band and presented more temperature dependence on reflected light. It is believed that the novel materials of cholesteric liquid crystalline polyester-silver nanocomposites might have great potential to possess the increased electrical conductivity and the unique anisotropic electric and optical properties. In Part V, an amphiphilic diblock copolymer (PMMA-b-PMAA) which was synthesized using ATRP and a hydrolysis process was used as a surfactant to prepare reverse micelles for the fabrication of silver nanoparticles. PMMA-silver nanocomposite fibers were then fabricated through photopolymerization of mixtures of MMA and silver nanoparticles in an anodic aluminum oxide template. After sintering of silver nanoparticle-embedded PMMA fibers at 500°C, the fabrication of silver nanowires can be achieved. These 1D nanostructures of silver metals might display highly potential functions as anisotropic interconnections in fabricating nanoscale electronic devices.

    Abstract I Acknowledgements V Table of Contents VII List of Schemes XI List of Tables XII List of Figures XIII Chapter 1. General Introduction 1 1-1 Preface 1 1-2 Research Motivations 3 Chapter 2. Review and Theoretical Background 7 2-1 Liquid Crystals 7 2-1.1 Anisotropic Physical Properties of Liquid Crystals 9 2-1.1(1) Birefringence of Liquid Crystals 10 2-1.1(2) Dielectric Properties of Liquid Crystals 11 2-1.2 Classification of Liquid Crystals 12 2-2 Thermotropic Liquid Crystals 12 2-2.1 Nematic Liquid Crystal Phase 13 2-2.2 Smectic Liquid Crystal Phase 15 2-2.3 Discotic Liquid Crystal Phase 19 2-2.4 Effect of Chirality 20 2-2.4(1) Cholesteric Liquid Crystal Phase 21 2-2.4(2) Chiral Smectic Liquid Crystal Phase 24 2-2.4(3) Other Chiral Liquid Crystal Phases 25 2-3 Lyotropic Liquid Crystals 26 2-3.1 Amphiphilic Lyotropic Liquid Crystals 27 2-3.2 Chromonic Lyotropic Liquid Crystals 29 2-3.3 Polymeric Lyotropic Liquid Crystals 30 2-4 Liquid Crystalline Polymers 31 2-4.1 Main-chain Liquid Crystalline Polymers 32 2-4.2 Side-chain Liquid Crystalline Polymers 33 2-5 Introduction of Photochromic Materials 35 2-5.1 Mechanism of E/Z Isomerization 36 2-5.2 Photochromism in Liquid Crystals 39 2-6 Nanomaterials 40 2-6.1 Silver Nanoparticles 42 2-6.2 Polymer-silver Nanocomposites 43 2-8 References 44 Chapter 3. Synthesis and Characterization of Novel Liquid Crystalline Polymers Containing Cholesteryl Pendant Groups 51 3-1 Introduction 51 3-2 Experimental Section 53 3-2.1 Measurements 53 3-2.2 Materials 54 3-2.3 Synthesis of Monomers 54 3-2.4 Synthesis of Polymers 57 3-3 Results and Discussion 58 3-3.1 Molecular Weight and Thermal Resistance of Polymers 58 3-3.2 Phase Behaviors of Monomer Mixtures and Copolymers 60 3-3.3 X-ray Diffraction Analysis of Polymers 62 3-3.4 Optical Properties of Monomer Mixtures and Copolymers 65 3-4 Summary 69 3-5 References 70 Chapter 4. Thermotropic, Lyotropic Behaviors and Optical Properties of Novel Photochromic Cholesteric Liquid Crystalline Materials 73 4-1 Introduction 73 4-2 Experimental Section 75 4-2.1 Measurements 75 4-2.2 Materials 76 4-2.3 Synthesis of Chiral Monomers 77 4-3 Results and Discussion 79 4-3.1 Thermal Properties of Chiral Monomers 79 4-3.2 Solvent Effects on Lyotropic Properties of Monomers 80 4-3.3 Optical Properties of Lyotropic Liquid Crystals with Cholesteric Phase 84 4-3.3.1 Thermal Effect 85 4-3.3.2 UV Effect 86 4-4 Summary 89 4-5 References 90 Chapter 5. Imprinting Self-assembled Molecular Arrangements of Cholesteric Liquid Crystals on Achiral Non-liquid Crystalline Polymer Networks 93 5-1 Introduction 93 5-2 Experimental Section 95 5-2.1 Measurements 95 5-2.2 Materials 95 5-2.3 Synthesis of Difunctional Monomers 96 5-2.4 Fabrication of CLC-imprinted Cells 97 5-3 Results and Discussion 99 5-3.1 Chemical Structure Analysis of CLC-imprinted Polymer Networks 99 5-3.2 POM Analysis of the Fabricated Cells 99 5-3.3 Optical Properties of the Fabricated Cells 100 5-4 Summary 103 5-5 References 103 Chapter 6. Synthesis and Characterization of New Main-chain Cholesteric Liquid Crystalline Polyesters with in Situ Synthesized Silver Nanoparticles 105 6-1 Introduction 105 6-2 Experimental Section 108 6-2.1 Measurements 108 6-2.2 Materials 108 6-2.3 Synthesis of Monomers 109 6-2.4 Synthesis of Cholesteric Liquid Crystalline Polyesters 111 6-2.5 Preparation of Polyester-Ag Nanocomposite 113 6-3 Results and Discussion 114 6-3.1 Synthesis and Characterization of Polyesters 114 6-3.2 Characterization of Polyester-Ag Nanocomposite 115 6-3.3 Thermal Characterization of Polyesters and Nanocomposite 118 6-3.4 Optical Properties of Polyesters and Nanocomposite 121 6-4 Summary 122 6-5 References 123 Chapter 7. Fabrication of Silver Nanoparticle-embedded Fibers and Silver Nanowires via Reversed Micelle with Amphiphilic Diblock Copolymer and Aluminum Oxide Template 127 7-1 Introduction 127 7-2 Experimental Section 128 7-2.1 Measurements 128 7-2.2 Materials 129 7-2.3 Synthesis of Amphiphilic Diblock Copolymer 129 7-2.4 Preparation of Silver Nanoparticles 133 7-2.5 Preparation of Silver Nanoparticles Embedded within Polymer Fibers 134 7-2.6 Preparation of Silver Nanowires 135 7-3 Results and Discussion 135 7-3.1 Synthesis and Characterization of Synthesized Polymers 135 7-3.2 Characterization of Silver Nanoparticles 137 7-3.3 Characterization of Silver Nanocomposite Fibers and Silver Nanowires 139 7-4 Summary 140 7-5 References 140 Chapter 8. Conclusions 143 Appendix 145 Curriculum Vitae 145 List of Publication 146

    Ch2

    [1] P. J. Collings, M. Hird, “Introduction to Liquid Crystals Chemistry and Physics” Taylor & Francis, London, 1997.
    [2] I. Dierking, “Textures of Liquid Crystals” Wiley-VCH, Weinheim, 2003.
    [3] X. J. Wang, Q. F. Zhou, “Liquid Crystalline Polymers” World Scientific, Singapore, 2004.
    [4] F. Reinitzer, Monatsh. Chem., 9, 421 (1888).
    [5] O. Lehmann, Z. Phys. Chem., 4, 462 (1989).
    [6] V. Vill, “LiqCryst database” (http://www.lci-publisher.com/liqcryst.html).
    [7] S. Kumar, “Liquid Crystals: Experimental Study of Physical Properties and Phase Transitions” Cambridge University Press, New York, 2001.
    [8] B. Bahadur, “Liquid Crystals - Application and Uses” World Scientific, Singapore, 1990.
    [9] A. Yariv, “Optical Electronics in Modern Communications” Oxford University Press, New York, 1997.
    [10] P. G. de Gennes, J. Prost, “The Physics of Liquid Crystals” Oxford University Press, New York, 1993.
    [11] E. B. Priestley, P. J. Wojtowicz, P. Sheng, “Introduction to Liquid Crystals” Princeton, New Jersey, 1975.
    [12] G. H. Heilmeier, L. A. Barton, L. A. Zanoni, Appl. Phys. Lett., 13, 46 (1968).
    [13] B. Bahadur, Mol. Cryst. Liq. Cryst., 109, 3 (1984).
    [14] P. G. de Gennes, Angew. Chem. Int. Ed. Engl., 31, 842 (1992).
    [15] E. Kaneko, “Liquid Crystal TV Displays: Principles and Applications of Liquid Crystal Displays” KTK Scientific, Tokyo, 1987.
    [16] M. Schadt, W. Helfrich, Appl. Phys. Lett., 18, 127 (1971).
    [17] D. de Rossi, J. Robert, J. Appl. Phys., 49, 1139 (1978).
    [18] R. A. van Delden, “Controlling Molecular Chirality and Motion” Ph.D. Thesis, University of Groningen, 2002.
    [19] A. J. Snell, K. D. Mackensie, W. E. Spear, P. G. Lecomber, Appl. Phys., 24, 357 (1981).
    [20] H. Baumgärtel, E. U. Franck, W. Grünbein, “Topics in Physical Chemistry” Springer, New York, 1994.
    [21] P. Oswald, P. Pieranski, “Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments”Taylor & Francis, Boca Raton, 2005.
    [22] T. Mukai, M. Yoshio, T. Kato, M. Yoshizawa, H. Ohno, Chem. Commun., 1333 (2005).
    [23] M. Yoshio, T. Mukai, K. Kanie, M. Yoshizawa, H. Ohno, T. Kato, Adv. Mater., 14, 351 (2002).
    [24] K. Hoshino, K. Kanie, T. Ohtake, T. Mukai, M. Yoshizawa, S. Ujiie, H. Ohno, T. Kato, Macromol. Chem. Phys., 203, 1547 (2002).
    [25] Y. Iinuma, K. Kishimoto, Y. Sagara, Masafumi Yoshio, T. Mukai, I. Kobayashi, H. Ohno, T. Kato, Macromolecules, 40, 4874 (2007).
    [26] T. Kato, Science, 295, 2414 (2002).
    [27] K. Kishimoto, M. Yoshio, T. Mukai, M. Yoshizawa, H. Ohno, T. Kato, J. Am. Chem. Soc., 125, 3196 (2003).
    [28] E. Peeters, J. Lub, J. A. M. Steenbakkers, D. J. Broer, Adv. Mater., 18, 2412 (2006).
    [29] R. Piñol, J. Lub, M. P. Garcia, E. Peeters, J. L. Serrano, D. Broer, T. Sierra, Chem. Mater., 20, 6076 (2008).
    [30] H. Mori, P. J. Bos, Jpn. J. Appl. Phys., 38, 2837 (1999).
    [31] S. H. Hwang, Y. J. Lim, M. H. Lee, S. H. Lee, G. D. Lee, H. Kang, K. J. Kim, H. C. Choi, Curr. Appl. Phys., 7, 690 (2007).
    [32] H. Mori, Jpn. J. Appl. Phys., 36, 143 (1997).
    [33] H. Mori, Y. Itoh, T. Nishiura, T. Nakamura, Y. Shinagawa, Jpn. J. Appl. Phys., 36, 143 (1997).
    [34] P. G. Mezey, “New Developments in Molecular Chirality” Kluwer Academic, Boston, 1991.
    [35] H. S. Kitzerow, C. Bahr, “Chirality in Liquid Crystals” Springer, New York, 2001.
    [36] N. Tamaoki, Adv. Mater., 13, 1135 (2001).
    [37] A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, L. Oriol, Adv. Mater., 16, 791 (2004).
    [38] G. Chilaya, G. Hauck, H. D. Koswig, D. Sikharulidze, J. Appl. Phys., 80, 1907 (1996).
    [39] J. Schmidtke, S. Kniesel, H. Finkelmann, Macromolecules, 38, 1357 (2005).
    [40] D. S. Parmar, J. J. Singh, A. Eftekhari, Rev. Sci. Instrum., 63, 225 (1992).
    [41] B. I. Senyuk, I. I. Smalyukh, O. D. Tirrell, Opt. Lett., 30, 349 (2005).
    [42] S. W. Kang, S. Sprunt, L. C. Chien, Chem. Mater., 18, 4436 (2006).
    [43] Y. Li, Y. Iwakura, K. Nakayama, H. Shimizu, Compos. Sci. Technol., 67, 2886 (2007).
    [44] P. V. Shibaev, J. Madsen, A. Z. Genack, Chem. Mater., 16, 1397 (2004).
    [45] V. A. Mallia, N. Tamaoki, Chem. Mater., 15, 3237 (2003).
    [46] D. J. Broer, G. N. Mol, J. A. M. M. van Haaren, J. Lub, Adv. Mater., 11, 573 (1999).
    [47] R. A. M. Hikmet, H. Kemperman, Nature, 392, 476 (1998).
    [48] S. T. Lagerwall, “Ferroelectric and Antiferroelectric Liquid Crystals” Wiley-VCH, New York, 1999.
    [49] S. Meiboom, J. P. Sethna, P. W. Anderson, W. F. Brinkman, Phys. Rev. Lett., 46, 1216 (1981).
    [50] S. Meiboom, M. Sammon, W. F. Brinkman, Phys. Rev. A, 27, 438 (1983).
    [51] H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, T. Kajiyama, Nat. Mater., 1, 64 (2002).
    [52] H. J. Coles, M. N. Pivnenko, Nature, 436, 997 (2005).
    [53] Z. Ge, L. Rao, S. Gauza, S. T. Wu, J. Display Technol., 5, 250 (2009).
    [54] I. Dierking, S. T. Lagerwall, Liq. Cryst., 26, 83 (1999).
    [55] N. S. Cameron, M. K. Corbierre, A. Eisenberg, Can. J. Chem., 77, 1311 (1999).
    [56] J. Barbera, A. C. Garces, N. Jayaraman, A. Omenat, J. L. Serrano, J. Fraser Stoddart, Adv. Mater., 13, 175 (2001).
    [57] H. Ringsdorf, B. Schlarb, J. Venzmer, Angew Chem. Int. Ed. Engl., 27, 113 (1988).
    [58] F. Livolant, A. Leforestier, Prog. Polym. Sci., 21, 1115 (1996).
    [59] K. Fontell, Mol. Cryst. Liq. Cryst., 63, 59 (1981).
    [60] C. K. Ober, G. Wegner, Adv. Mater., 9, 17 (1997).
    [61] R. C. Smith, W. M. Fischer, D. L. Gin, J. Am. Chem. Soc., 119, 4092 (1997).
    [62] T. K. Attwood, J. E. Lydon, Mol. Cryst. Liq. Cryst., 108, 349 (1984).
    [63] T. K. Attwood, J. E. Lydon, F. Jones, Liq. Cryst., 1, 499 (1986).
    [64] Y. A. Nastishin, H. Liu, T. Schneider, V. Nazarenko, R. Vasyuta, S. V. Shiyanovskii, O. D. Lavrentovich, Phys. Rev. E, 72, 041711 (2005).
    [65] Y. A. Nastishin, H. Liu, S. V. Shiyanovskii, O. D. Lavrentovich, A. F. Kostko, M. A. Anisimov, Phys. Rev. E, 70, 051706 (2004).
    [66] A. S. Vasilevskaya, Ε. V. Generalova, A. S. Sonin, Russ. Chem. Rev., 58, 1575 (1989).
    [67] Τ. Κ. Attwood, J. Ε. Lydon, Mol. Cryst. Liq. Cryst., 108, 349 (1984).
    [68] J. Dreyer, Phys. Colloid Chem., 52, 808 (1948).
    [69] J. Watanabe, M. Goto, T. Nagase, Macromolecules, 20, 298 (1987).
    [70] M. Müller, R. Zentel, Macromol. Chem. Phys., 201, 2055 (2000).
    [71] M. Müller, R. Zentel, H. Keller, Adv. Mater., 9, 159 (1997).
    [72] H. Hou, A. Reuning, J. H. Wendorff, A. Greiner, Macromol. Biosci., 1, 45 (2001).
    [73] W. Hohn, B. Tieke, B. Macromol. Chem. Phys., 198, 703 (1997).
    [74] G. Zhang, X. Zhou, Y. Huang, Polymer, 44, 2137 (2003).
    [75] J. Watanabe, H. Ono, I. Uematsu, A. Abe, Macromolecules, 18, 2141 (1985).
    [76] G. Maxein, S. Mayer, R. Zentel, Macromolecules, 32, 5747 (1999).
    [77] Q. B. Xue, T. Kimura, T. Fukuda, S. Shimada, H. Matsuda, Liq. Cryst., 31, 137 (2004).
    [78] N. Tsuchihashi, H. Nomori, M. Hatano, S. Mori, Bull. Chem. Soc. Jpn., 48, 29 (1975).
    [79] G. W. Gray, “Thermotropic liquid crystals” Wiley, New York, 1987.
    [80] C. Robinson, Trans. Faraday Soc., 52, 571 (1956).
    [81] H. Finkelmann, H. Ringsdorf, J. H. Wendorff, Makromol. Chem., 179, 273 (1978).
    [82] K. Binnemans, Chem. Rev., 105, 4148 (2005).
    [83] T. Kato, N. Mizoshita, K. Kanie, Macromol. Rapid Commun., 22, 797 (2001).
    [84] M. V. Kozlovsky, V. P. Shibaev, A. I. Stakhanov, T. Weyrauch, W. Haase, Liq. Cryst., 24, 759 (1998).
    [85] J. Ortegren, P. Busson, M. Lindgren, D. S. Hermann, P. O. Arntzen, F. Sahlen, M. Trollsas, U. W. Gedde, A. Hult, L. Komitov, Opt. Mater., 9, 220 (1998).
    [86] K. Inui, K. Okazaki, T. Miyata, T. Uragami, J. Membrane Sci., 143, 93 (1998).
    [87] Z. Zheng, J. Xu, Y. Sun, J. Zhou, B. Chen, Q. Zhang, K. Wang, J. Polym. Sci. Part A: Polym. Chem., 44, 3210 (2006).
    [88] P. Forcen, L. Oriol, C. Sanchez, R. Alcala, S. Hvilsted, K. Jankova, J. Loos, J Polym. Sci. Part A: Polym. Chem., 45, 1899 (2007).
    [89] N. A. Plate, “Liquid-Crystal Polymers” Plenum, New York, 1993.
    [90] C. B. McArdle, “Side Chain Liquid Crystal Polymers” Blackie, New York, 1989.
    [91] G. J. Kavarnos, “Fundamentals of Photoinduced Electron Transfer” NY:VCH, New York, 1993.
    [92] J. Fritzsche, C. Rendus, Acad. Sci., 69, 1035 (1867).
    [93] H. Bouas-Laurent, H. Dürr, Pure Appl. Chem., 73, 639 (2001).
    [94] V. A. Barachevskii, G. I. Lashkov, V. A. Tsekhomskii, “Photochromism and Its Application” Izd. Khimiya, Moscow, 1977.
    [95] D. Fanghänel, G. Timpe, V. Orthman, “Organic Photochromes” Bureau, New York, (1990).
    [96] T. Ikeda, A. Kanazawa, “Chiroptical Molecular Switches” Wiley-VCH, Weinheim, 2001.
    [97] G. Berkovic, V. Krongauz, V. Weiss, Chem. Rev., 100, 1741 (2000).
    [98] A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev, Liq. Cryst., 25, 393 (1998).
    [99] A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev, Liq. Cryst., 25, 679 (1998).
    [100] N. Boiko, A. Bobrovsky, V. Shibaev, Mol. Cryst. Liq. Cryst., 332, 173 (1999).
    [101] A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev, J. Opt. Technol., 66, 574 (1999).
    [102] M. Brehmer, J. Lub, P. van deWitte, Adv. Mater., 10, 17 (1998).
    [103] P. van de Witte, J. C. Galan, J. Lub, Liq. Cryst., 24, 819 (1998).
    [104] P. van de Witte, M. Brehmer, J. Lub, J. Mater. Chem., 9, 2087 (1999).
    [105] P. Buffat, J. P. Borel, Phys. Rev. A, 13, 2287 (1976).
    [106] A. N. Goldstein, C. M. Esher, A. P. Alivisatos, Science, 256, 1425 (1992).
    [107] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, J. Chem. Soc. Chem. Commun., 801 (1994).
    [108] N. Herron, J. C. Calabrese, W. E. Farneth, Y. Wang, Science, 259, 1426 (1993).
    [109] T. Vossmeyer, G. Reck, L. Katsikas, E. T. K. Haupt, B. Schulz, H. Weller, Science, 267, 1476 (1995).
    [110] C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc., 115, 8706 (1993).
    [111] C. P. Poole, F. J. Owens, “Introduction to Nanotechnology” Wiley, Hoboken, 2003.
    [112] K. J. Klabunde, “Nanoscale Materials in Chemistry” Wiley, New York, 2001.
    [113] M. C. Daniel, D. Astruc, Chem. Rev., 104, 293 (2004).
    [114] J. Y. Cheng, C. A. Ross, H. I. Smith, E. L. Thomas, Adv. Mater., 18, 2505 (2006).
    [115] D. Wang, H. J. Möhwald, Mater. Chem., 14, 459 (2004).
    [116] Wilhelm T. S. Huck, “Nanoscale Assembly: Chemical Techniques” Springer, New York, 2005.
    [117] W. Fritzsche, H. Porwol, A. Wiegand, S. Bornmann, J. M. Köhler, Nanostruct. Mater., 10, 89 (1998).
    [118] L. T. Chang, C. C. Yen, J. Appl. Polym. Sci., 55, 371 (1995).
    [119] Y. Shiraishi, N. Toshima, Colloid Surf. A- Physicochem. Eng. Asp., 169, 59 (2000).
    [120] Q. L. Feng, F. Z. Cuo, T. N. Kim, J. W. Kim, J. Mater. Sci. Lett., 18, 559 (1999).
    [121] H. Jiang, K. S. Moon, Y. Li, C. P. Wong, Chem. Mater., 18, 2969 (2006).
    [122] Z. Q. Zhang, R. C. Patel, R. Kothari, C. P. Johnson, S. E. Friberg, P. A. Aikens, J. Phys. Chem. B, 104, 1176 (2000).
    [123] B. Xue, P. Chen, O. Hong, J. Y. Lin, K. L. Tan, J. Mater. Chem., 11, 2378 (2001).
    [124] A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M. I. Khan, R. Kumar, M. Sastry, Colloids Surf. B, 28, 313 (2003).
    [125] M. Andersson, V. Alfredsson, P. Kjellin, A. Palmqvist, Nano Lett., 2, 1403 (2002).
    [126] I. Lisiecki, M. P. Pileni, Langmuir, 19, 9486 (2003).
    [127] A. Taleb, C. Petit, M. P. Pileni, Chem. Mater., 9, 950 (1997).
    [128] J. Z. Zhang, “Self-Assembled Nanostructures” Plenum, New York, 2003.
    [129] H. Zhijun, M. J. Alain, K. V. Sunil, G. Jean-Francüois, J. Am. Chem. Soc., 127, 6526 (2005).
    [130] H. Shen, A. Eisenberg, Macromolecules, 33, 2561 (2000).
    [131] A. Taleb, C. Petit, M. P. Pileni, Chem. Mater., 9, 950 (1997).
    [132] M. Andersson, J. S. Pedersen, E. C. Palmqvist, Langmuir, 21, 11387 (2005).
    [133] M. F. Ottaviani, R. Valluzzi, L. Balogh, Macromolecules, 35, 5105 (2002).
    [134] T. K. Sarma, D. Chowdhury, A. Paul, A. Chattopadhyay, Chem. Commun., 1048, (2002).
    [135] Y. Shiraishi, N. Toshima, Colloids Surf. A, 169, 59 (2000).
    [136] M. Okamoto, S. Morita, H. Taguchi, Y. H. Kim, T. Kotaka, H. Tateyama, Polymer, 41, 3887 (2000).
    [137] Y. Badr, M. A. Mahmoud, J. Phys. Chem. Solids, 68, 413 (2007).
    [138] K. S. Lee, M. A. El-Sayed, J. Phys. Chem. B, 110, 19220 (2006).
    [139] G. B. Smith, C. A. Deller, P. D. Swift, A. Gentle, P. D. Garrett, W. K. Fisher, J. Nanopart. Res., 4, 157 (2002).
    [140] G. Schmid, “Colloids and Surfaces” Wiley-VCH, Weinheim, 1994.
    [141] X. Wang, K. Naka, H. Itoh, S. Park, Y. Chujo, Chem. Commun., 1300 (2002).
    [142] H. Kong, J. Jang, Chem. Commun., 3010 (2006).

    Ch3

    [1] H. Finkelmann, H. Ringsdorf, J. H. Wendorff, Makromol. Chem., 179, 273 (1978).
    [2] S. Hvilsted, T. G. Pedersen, N. C. R. Holme, P. S. Ramanujam, Turk. J. Chem., 22, 33 (1998).
    [3] I. Naydenova, I. Nikolova, T. Todorov, N. C. R. Holme, P. S. Ramanujam, S. Hvilsted, J. Opt. Soc. Am. B- Opt. Phys., 15, 1257 (1998).
    [4] M. V. Kozlovsky, V. P. Shibaev, A. I. Stakhanov, T. Weyrauch, W. Haase, Liq. Cryst., 24, 759 (1998).
    [5] J. Ortegren, P. Busson, M. Lindgren, D. S. Hermann, P. O. Arntzen, F. Sahlen, M. Trollsas, U. W. Gedde, A. Hult, L. Komitov, Opt. Mater., 9, 220 (1998).
    [6] G. S. McHattie, C. T. Imrie, M. D. Ingram, Electrochim. Acta., 43, 1151 (1998).
    [7] K. Inui, K. Okazaki, T. Miyata, T. Uragami, J. Membrane Sci., 143, 93 (1998).
    [8] Z. Zheng, J. Xu, Y. Sun, J. Zhou, B. Chen, Q. Zhang, K. Wang, J. Polym. Sci. Part A: Polym. Chem., 44, 3210 (2006).
    [9] P. Forcen, L. Oriol, C. Sanchez, R. Alcala, S. Hvilsted, K. Jankova, J. Loos, J Polym. Sci. Part A: Polym. Chem., 45, 1899 (2007).
    [10] K. M. Blackwood, I. C. Sage, Curr. Opin. Solid St. M., 3, 610 (1998).
    [11] N. A. Plate, “Liquid-Crystal Polymers” Plenum, New York, 1993.
    [12] C. B. McArdle, “Side Chain Liquid Crystal Polymers” Blackie, New York, 1989.
    [13] T. Pfeuffer, K. Kürschner, P. Strohriegl, Macromol. Chem. Phys., 200, 2480 (1999).
    [14] N. Hoshino, Y. Matsuoka, K. Okamoto, A. Yamagishi, J. Am. Chem. Soc., 125, 1718 (2003).
    [15] M. J. Cook, M. R. Wilson, J. Chem. Phys., 112, 1560 (2000).
    [16] N. Tamaoki, Adv. Mater., 13, 1135 (2001).
    [17] G. Chilaya, G. Hauck, H. D. Koswig, D. Sikharulidze, J. Appl. Phys., 80, 1907 (1996).
    [18] J. Schmidtke, S. Kniesel, H. Finkelmann, Macromolecules, 38, 1357 (2005).
    [19] D. S. Parmar, J. J. Singh, A. Eftekhari, Rev. Sci. Instrum., 63, 225 (1992).
    [20] D. Demus, J. Goodby, G. W. Gray, H. W. Spiess, V. Vill, “Handbook of Liquid Crystals” Wiley-VCH, Weinheim, 1998.
    [21] A. Y. Bobrovsky, N. I. Boyko, V. P. Shibaev, Chem. Mater., 13, 1998 (2001).
    [22] V. P. Shibaev, V. I. Kopp, A. Z. Genack, J. Phys. Chem. B, 107, 6961 (2003).
    [23] A. Y. Bobrovsky, N. I. Boyko, V. P. Shibaev, Liq. Cryst., 24, 489 (1998).
    [24] T. Mihara, T. Uedaira, N. Koide, Liq. Cryst., 29, 855 (2002).
    [25] J. S. Hu, B. Y. Zhang, X. Z. He, C. S. Cheng, Liq. Cryst., 31, 1357 (2004).
    [26] S. J. Sun, L. C. Liao, T. C. Chang, J. Polym. Sci. Part A: polym. Chem., 38, 1852 (2000).
    [27] J. S. Hu, B. Y. Zhang, Y. Guan, X. Z. He, J. Polym. Sci. Part A: Polym. Chem., 42, 5262 (2004).
    [28] P. C. Yang, J. H. Liu, J. Polym. Sci. Part A: Polym. Chem., 46, 1289 (2008).
    [29] H. Hattori, T. Uryu, J. Polym. Sci. Part A: Polym. Chem., 38, 887 (2000).
    [30] J. H. Liu, P. C. Yang, Y. H. Chiu, Y. Soda, J. Polym. Sci. Part A: Polym. Chem., 45, 2026 (2007).
    [31] J. H. Liu, P. C. Yang, Polymer, 47, 4925 (2006).
    [32] H. Hattori, T. Uryu. J. Polym. Sci. Part A: Polym. Chem., 38, 887 (2000).
    [33] J. M. Gilli, M. Kamaye, Liq. Cryst., 12, 545 (1992).
    [34] H. Finkelmann, H. Ringsdorf, W. Siol, J. H. Wendorff, Makromol. Chem., 179 ,829 (1978).
    [35] H. Finkelmann, G. Rehage, Adv. Polym. Sci., 60, 99 (1984;).
    [36] J. S. Hu, B. Y. Zhang, Y. G. Jia, S. Chen, Macromolecules, 36, 9060 (2003).
    [37] Y. Y. Zheng, Q. Y. Li, B. Y. Zhang, L. F. Zhang, J. Appl. Polym. Sci., 97, 2392 (2005).
    [38] S. Rukmani, R. Ganga, J. Polym. Sci. Part A: Polym. Chem., 39, 1743 (2001).
    [39] T. Kato, H. Kihara, S. Ujiie, T. Uryu, J. M. J. Frechet, Macromolecules, 29, 8734 (1996).
    [40] X. Z. He, B. Y. Zhang, Q. J. Sun, H. W. Lu, L. Li, Liq. Cryst., 32, 431 (2005).
    [41] E. B. Barmatov, A. A. Obrascov, D. A, Pebalk, M. V. Barmatova, Colloid Polym. Sci., 282, 530 (2004).
    [42] E. B. Barmatov, M. V. Barmatova, Liq. Cryst., 30, 1075 (2003).
    [43] E. B. Barmatov, A. Y. Bobrovsky, D. A. Pebalk, M. V. Barmatova, V. P. Shibaev, J. Polym. Sci. Part A: Polym. Chem., 37, 3215 (1999).
    [44] S. T. Kim, H. Finkelmann, Macromol. Rapid Commun., 22, 429 (2001).

    Ch4

    [1] E. S. Kumar, C. K. Das, K. Banik, G. Mennig, Compos. Sci. Technol., 67, 1202 (2007).
    [2] S. Meretz, U. Mansmann, G. Hinrichsen, Compos. Sci. Technol., 41, 179 (1991).
    [3] S. A. El-Safty, T. Hanaoka, Chem. Mater., 16, 384 (2004).
    [4] G. C. Kuang, Y. Ji, X. R. Jia, Y. Li, E. Q. Chen, Y. Wei, Chem. Mater., 20, 4173 (2008).
    [5] J. S. Park, S. Teren, W. H. Tepp, D. J. Beebe, E. A. Johnson, N. L. Abbott, Chem. Mater., 18, 6147 (2006).
    [6] N. Kapernaum, F. Giesselmann, Phys. Rev. E., 78, 1539 (2008).
    [7] A. A. Leal, J. M. Deitzel, J. W. Gillespie, Compos. Sci. Technol., 67, 2786 (2007).
    [8] A. Pegoretti, A. Zanolli, C. Migliaresi, Compos. Sci. Technol., 66, 1953 (2006).
    [9] C. S. Pecinovsky, E. S. Hatakeyama, D. L. Gin, Adv. Mater., 20, 174 (2008).
    [10] A. M. F. Neto, S. R. A. Salinas, “The Physics of Lyotropic Liquid Crystals: Phase Transitions and Structural Properties” Oxford University Press, New York, 2005.
    [11] G. A. N. Gowda, H. Chen, C. L. Khetrapal, R. G. Weiss, Chem. Mater., 16, 2101 (2004).
    [12] X. Cheng, X. Dong, R. Huang, X. Zeng, G. Ungar, M. Prehm, C. Tschierske, Chem. Mater., 20, 4729 (2008).
    [13] K. A. Simon, P. Sejwal, R. B. Gerecht, Y. Y. Luk, Langmuir, 23, 1453 (2007).
    [14] G. Klimusheva, S. Bugaychuk, Y. Garbovskiy, O. Kolesnyk, Opt. Lett., 31, 235 (2006).
    [15] K. A. Aamer, G. N. Tew, Macromolecules, 40, 2737 (2007).
    [16] P. K. Bhowmik, A. H. Molla, H. Han, Macromolecules, 31, 621 (1998).
    [17] H. Goto, K. Akagi, Chem. Mater., 18, 255 (2006).
    [18] J. Jin, V. Nguyen, W. Gu, X. Lu, B. J. Elliott, D. L. Gin, Chem. Mater., 17, 224 (2005).
    [19] N. Tamaoki, Adv. Mater., 13, 1135 (2001).
    [20] A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, L. Oriol, Adv. Mater., 16, 791 (2004).
    [21] B. I. Senyuk, I. I. Smalyukh, O. D. Tirrell, Opt. Lett., 30, 349 (2005).
    [22] S. W. Kang, S. Sprunt, L. C. Chien, Chem. Mater., 18, 4436 (2006).
    [23] Y. Li, Y. Iwakura, K. Nakayama, H. Shimizu, Compos. Sci. Technol., 67, 2886 (2007).
    [24] P. V. Shibaev, J. Madsen, A. Z. Genack, Chem. Mater., 16, 1397 (2004).
    [25] V. A. Mallia, N. Tamaoki, Chem. Mater., 15, 3237 (2003).
    [26] G. Zhang, X. Zhou, Y. Huang, Polymer, 44, 2137 (2003).
    [27] J. Watanabe, H. Ono, I. Uematsu, A. Abe, Macromolecules, 18, 2141 (1985).
    [28] G. Maxein, S. Mayer, R. Zentel, Macromolecules, 32, 5747 (1999).
    [29] Q. B. Xue, T. Kimura, T. Fukuda, S. Shimada, H. Matsuda, Liq. Cryst., 31, 137 (2004).
    [30] N. Tsuchihashi, H. Nomori, M. Hatano, S. Mori, Bull. Chem. Soc. Jpn., 48, 29 (1975).
    [31] G. Maxein, H. Keller, B. M. Novak, R. Zentel, Adv. Mater., 10, 341 (1998).
    [32] P. C. Yang, J. H. Liu, J. Polym. Sci. Part A: Polym. Chem., 46, 1289 (2008).
    [33] J. H. Liu, H. J. Hong, P. C. Yang, K. H. Tien, J. Polym. Sci. Part A: Polym. Chem., 46, 6214 (2008).
    [34] S. Pieraccini, M. I. Donnoli, A. Ferrarini, G. Gottarelli, G. Licini, C. Rosini, S. Superchi, G. P. Spada. J. Org. Chem., 68, 519 (2003).
    [35] L. Kutulya, V. Vashchenko, G. Semenkova, N. Shkolnikova. Mol. Cryst. Liq. Cryst., 331, 583 (1999).
    [36] R. Manohar, J. P. Shukla, J. Phys. Chem. Solids, 65, 1647 (2004).
    [37] Y. Tanaka, H. Tsuchiya, J. Phys. Colloques, 40, 41 (1979).
    [38] Y. Tanaka, H. Tsuchiya, M. Suzuki, K. Tsuda, J. Takano, H. Kurihara, Mol. Cryst. Liq. Cryst., 68, 1061 (1981).
    [39] G. A. Metselaar, S. J. Wezenberg, J. Cornelissen, R. Nolte, A. E. Rowan, J. Polym. Sci. Part A: Polym. Chem., 45, 981 (2007).
    [40] E. Ishow, B. Lebon, Y. He, X. Wang, L. Bouteiller, L. Galmiche, K. Nakatani, Chem. Mater., 18, 1261 (2006).
    [41] P. Chatelain, M. Germain, C. R. Hebd, Seances Acad. Sci., 259, 127 (1964).

    Ch5

    [1] E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    [2] S. John, Phys. Rev. Lett. 58, 2486 (1987).
    [3] K. Busch, “Photonic crystals: advances in design, fabrication, and characterization” Wiley-VCH, Weinheim, 2004.
    [4] N. Tamaoki, Adv. Mater., 13, 1135 (2001).
    [5] P. G. de Gennes, J. Prost, “The physics of Liquid Crystals” Oxford University Press, UK, 1993.
    [6] A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, L. Oriol, Adv. Mater., 16, 791 (2004).
    [7] G. Chilaya, G. Hauck, H. D. Koswig, D. Sikharulidze, J. Appl. Phys., 80, 1907 (1996).
    [8] J. Schmidtke, S. Kniesel, H. Finkelmann, Macromolecules, 38, 1357 (2005).
    [9] D. S. Parmar, J. J. Singh, A. Eftekhari, Rev. Sci. Instrum., 63, 225 (1992).
    [10] B. I. Senyuk, I. I. Smalyukh, O. D. Tirrell, Opt. Lett., 30, 349 (2005).
    [11] S. W. Kang, S. Sprunt, L. C. Chien, Chem. Mater., 18, 4436 (2006).
    [12] Y. Li, Y. Iwakura, K. Nakayama, H. Shimizu, Compos. Sci. Technol., 67, 2886 (2007).
    [13] P. V. Shibaev, J. Madsen, A. Z. Genack, Chem. Mater., 16, 1397 (2004).
    [14] V. A. Mallia, N. Tamaoki, Chem. Mater., 15, 3237 (2003).
    [15] A. C. Sentman, D. L. Gin, Angew. Chem. Int. Ed., 42, 1815 (2003).
    [16] M. Yoshio, T. Kagata, K. Hoshino, T. Mukai, H. Ohno, T. Kato, J. Am. Chem. Soc., 128, 5570 (2006).
    [17] K. Kishimoto, T. Suzawa, T. Yokota, T. Mukai, H. Ohno, T. Kato, J. Am. Chem. Soc., 127, 15618 (2005).
    [18] U. Theissen, S. J. Zilker, T. Pfeuffer, P. Strohriegl, Adv. Mater., 12, 1698 (2000).
    [19] R. Penterman, S. I. Klink, H. Koning, G. Nisato, D. J. Broer, Nature, 417, 55 (2002).
    [20] I. Dierking, Adv. Mater., 12, 167 (2000).
    [21] K. Kishikawa, A. Hirai, S. Kohmoto, Chem. Mater., 20, 1931 (2008).
    [22] R. A. M. Hikmet, J. Lub, Prog. Polym. Sci., 21, 1165 (1996).
    [23] I. Heynderickx, D. J. Broer, Y. Tervoort-Engelen, J. Mater. Sci., 27, 4107 (1992).
    [24] D. F. O’Brien, B. Armitage, A. Benedicto, D. E. Bennett, H. G. Lamparski, Y. S. Lee, W. Srisiri, T. M. Sisson, Acc. Chem. Res., 31, 861 (1998).
    [25] L. Oriol, J. L. Serrano, Angew. Chem. Int. Ed., 44, 6618 (2005).
    [26] C. Sánchez, B. Villacampa, R. Alcalá, C. Martínez, L. Oriol, M. Piñol, J. L. Serrano, Chem. Mater., 11, 2804 (1999).
    [27] J. D. Marty, M. Tizra, M. Mauzac, I. Rico-Lattes, A. Lattes, Macromolecules, 32, 8674 (1999).
    [28] J. D. Clapper, L. Sievens-Figueroa, C. A. Guymon, Chem. Mater., 20, 768 (2008).
    [29] D. L. Gin, X. Lu, P. R. Nemade, C. S. Pecinovsky, Y. Xu, M. Zhou, Adv. Funct. Mater., 16, 865 (2006).
    [30] M. J. Zhou, T. J. Kidd, R. D. Noble, D. L. Gin, Adv. Mater., 17, 1850 (2005).
    [31] Y. Xu, W. Gu, D. L. Gin, J. Am. Chem. Soc., 126, 1616 (2004).
    [32] M. Mitov, N. Dessaud, Liq. Cryst., 2, 184 (2007).
    [33] M. Mitov, N. Dessaud, Nature Mater., 5, 361 (2007).
    [34] H. Ren, S. T. Wu, J. Appl. Phys., 92, 797 (2002).
    [35] J. V. Crivello, Liq. Cryst., 3, 235 (1988).
    [36] P. S. Drzaic, “Liquid Crystal Dispersions” World Scientific, Singapore, 1995.
    [37] Y. H. Fan, H. Ren, S. T. Wu, Appl. Phys. Lett., 82, 2945 (2003).
    [38] H. Xianyu, T. H. Lin, S. T. Wu, Appl. Phys. Lett., 89, 091124 (2006).
    [39] Z. Bian, K. Li, W. Huang, H. Cao, H. Yang, Appl. Phys. Lett., 91, 201908 (2007).
    [40] D. J. Broer, J. Lub, D. K. Yang, Nature, 378, 467 (1995).

    Ch6

    [1] P. Buffat, J. P. Borel, Phys. Rev. A, 13, 2287 (1976).
    [2] A. N. Goldstein, C. M. Esher, A. P. Alivisatos, Science, 256, 1425 (1992).
    [3] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, J. Chem. Soc. Chem. Commun., 1994, 801 (1994).
    [4] N. Herron, J. C. Calabrese, W. E. Farneth, Y. Wang, Science, 259, 1426 (1993).
    [5] T. Vossmeyer, G. Reck, L. Katsikas, E. T. K. Haupt, B. Schulz, H. Weller, Science, 267, 1476 (1995).
    [6] C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc., 115, 8706 (1993).
    [7] C. P. Poole, F. J. Owens, “Introduction to Nanotechnology” Wiley, Hoboken, 2003.
    [8] K. J. Klabunde, “Nanoscale Materials in Chemistry” Wiley, New York, 2001.
    [9] M. C. Daniel, D. Astruc, Chem. Rev., 104, 293 (2004).
    [10] Z. Zhang, M. Han, J. Mater. Chem. Commun., 13, 641 (2003).
    [11] D. H. Cole, K. R. Shull, P. Baldo, L. Rehn, Macromolecules, 32, 771 (1999).
    [12] D. Y. Godovsky, Adv. Polym. Sci., 153, 165 (2000).
    [13] R. V. Kumar, R. Elgamiel, Y. Koltypin, Y. Diamant, A. Genanken, Langmuir, 14, 1406 (2001).
    [14] M. F. Ottaviani, R. Valluzzi, L. Balogh, Macromolecules, 35, 5105 (2002).
    [15] T. K. Sarma, D. Chowdhury, A. Paul, A. Chattopadhyay, Chem. Commun., 1048, (2002).
    [16] Y. Shiraishi, N. Toshima, Colloids Surf. A, 169, 59 (2000).
    [17] M. Okamoto, S. Morita, H. Taguchi, Y. H. Kim, T. Kotaka, H. Tateyama, Polymer, 41, 3887 (2000).
    [18] J. Ramos, A. Millan, F. Palacio, Polymer, 41, 8461 (2000).
    [19] K. Ghosh, S. N. Maiti, J. Appl. Polym. Sci., 42, 2237 (1991).
    [20] Y. Dirix, C. Bastiaansen, W. Caseri, P. Smith, J. Mater. Sci., 34, 3859 (1999).
    [21] S. Clemenson, L. David, E. Espuche, J. Polym. Sci. Part A: Polym. Chem., 45, 2657 (2007).
    [22] S. Clemenson, D. Leonard, D. Sage, L. David, E. Espuche, J. Polym. Sci. Part A: Polym. Chem., 46, 2062 (2008).
    [23] H. Nagasawa, M. Maruyama, T. Komatsu, S. Isoda, T. Kobayashi, Phys. Status Solidi A- Appl. Mat., 191, 67 (2002).
    [24] H. M. Zidan, Polym. Test, 18, 449 (1999).
    [25] L. C. Courrol, F. R. D. O. Silva, L. Gomes, Colloid Surf. A- Physicochem. Eng. Asp., 305, 54 (2007).
    [26] Z. H. Mbhele, M. G. Salemane, C. G. C. E. van Sittert, J. M. Nedeljkovic, V. Djokovic, A. S. Luyt, Chem. Mater., 15, 5019 (2003).
    [27] P. Y. Silvert, H. U. Ronaldo, T. E. Kamar, J. Mater. Chem., 7, 293 (1997)
    [28] G. Schmid, “Colloids and Surfaces” Wiley-VCH, Weinheim, 1994.
    [29] W. Fritzsche, H. Porwol, A. Wiegand, S. Bornmann, J. M. Köhler, Nanostruct. Mater., 10, 89 (1998).
    [30] L. T. Chang, C. C. Yen, J. Appl. Polym. Sci., 55, 371 (1995).
    [31] Y. Shiraishi, N. Toshima, Colloid Surf. A- Physicochem. Eng. Asp., 169, 59 (2000).
    [32] Q. L. Feng, F. Z. Cuo, T. N. Kim, J. W. Kim, J. Mater. Sci. Lett., 18, 559 (1999).
    [33] H. Jiang, K. S. Moon, Y. Li, C. P. Wong, Chem. Mater., 18, 2969 (2006).
    [34] Y. Badr, M. A. Mahmoud, J. Phys. Chem. Solids, 68, 413 (2007).
    [35] C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, J. R. Heath, Science, 277, 1978 (1997).
    [36] J. F. Sampaio, K. C. Beverly, J. R. Heath, J. Phys. Chem. B, 105, 8797 (2001).
    [37] K. S. Lee, M. A. El-Sayed, J. Phys. Chem. B, 110, 19220 (2006).
    [38] G. B. Smith, C. A. Deller, P. D. Swift, A. Gentle, P. D. Garrett, W. K. Fisher, J. Nanopart. Res., 4, 157 (2002).
    [39] X. J. Wang, Q. F. Zhou, “Liquid Crystalline Polymers” World Scientific, Singapore, 2004.
    [40] E. B. Barmatov, D. A. Pebalk, M. V. Barmatova, Langmuir, 20, 10868 (2004).
    [41] E. B. Barmatov, A. S. Medvedev, D. A. Pebalk, M. B. Barmatova, N. A. Nikonorova, S. B. Zezin, V. P. Shibaev, Polym. Sci. Ser. A, 48, 665 (2006).
    [42] E. B. Barmatov, D. A. Pebalk, M. V. Barmatova, Liq. Cryst., 33, 1059 (2006).
    [43] M. Mitov, C. Portet, C. Bourgerette, E. Snoeck, M. Verelst, Nat. Mater., 1, 229 (2002).
    [44] M. Mitov, C. Bourgerette, F. D. Guerville, J. Phys.: Condens. Matter, 16, S1981 (2004).
    [45] G. A. Shandryuk, A. V. Rebrov, R. B. Vasil’ev, S. G. Dorofeev, A. S. Merekalov, A. M. Gas’kov, R. V. Talroze, Polym. Sci. Ser. B, 47, 266 (2005).
    [46] E. B. Barmatov, D. A. Pebalk, M. B. Barmatova, Polym. Sci. Ser. B, 49, 47 (2007).
    [47] G. A. Shandryuk, E. V. Matukhina, R. B. Vasil’ev, A. Rebrov, G. N. Bondarenko, A. S. Merekalov, A. M. Gas’kov, R. V. Talroze, Macromolecules, 41, 2178 (2008).
    [48] S. Mallakpour, E. Kowsari, Polym. Adv. Technol., 17, 174 (2006).
    [49] S. Mallakpour, S. Sepehri, J. Appl. Polym. Sci., 110, 2942 (2008).
    [50] J. Matsusz, R. W. Lenz, Eur. Polym. Sci., 19, 1043 (1983).
    [51] F. Higashi, T. Takakura, Y. Sumi, J. Polym. Sci. Polym. Chem. Ed., 42, 1321 (2004).
    [52] F. Higashi, R. Hayashi, T. Yamazaki, J. Appl. Polym. Sci., 86, 2607 (2002).
    [53] F. Higashi, K. Mitani, J. Polym. Sci. Polym. Chem. Ed., 38, 1270 (2000).
    [54] F. Higashi, T. Mashimo, J. Polym. Sci. Polym. Chem. Ed., 23, 2999 (1985).
    [55] F. Higashi, A. Tobe, Macromol. Chem. Phys., 202, 745 (2001).
    [56] F. Higashi, I. Takashi, N. Akyama, J. Polym. Sci. Polym. Chem. Ed., 22, 3607 (1984).
    [57] S. Mallakpour, M. Kolahdoozan, Iran. Polym. J., 15, 307 (2006).
    [58] Y. Ng Cheong Chan, R. R. Schrock, R. E. Cohen, Chem. Mater., 4, 24 (1992).
    [59] Y. Ng Cheong Chan, R. R. Schrock, R. E. Cohen, J. Am. Chem. Soc., 114, 7295 (1992).
    [60] W. Partenheimer, E. H. Johnson, Inorg. Synth., 16, 117 (1976).
    [61] B. Sapich, J. Stumpe, T. Krawinkel, H. R. Kricheldorf, Macromolecules, 31, 1016 (1998).
    [62] H. R. Kricheldorf, N. Probst, High Perform. Polym., 7, 471 (1995).
    [63] G. Schwarz, H. R. Kricheldorf, J. Polym. Sci. Part A: Polym. Chem., 34, 603 (1996).
    [64] Y. G. Sun, B. Gates, B. Mayers, Y. N. Xia, Nano Lett., 2, 165 (2002).
    [65] Y. G. Sun, Y. N. Xia, Adv. Mater., 14, 833 (2002).
    [66] D. S. Wang, M. Kerker, H. Chew, Appl. Opt., 19, 2135 (1990).
    [67] Y. Sun, Y. Xia, Analyst, 128, 686 (2003).
    [68] D. H. Chen, Y. W. Huang, J. Colloid Interf. Sci., 255, 299 (2002).
    [69] C. Luo, Y. Zhang, X. Zeng, Y. Zeng, Y. Wang, J. Colloid Interf. Sci., 288, 444 (2002).
    [70] D. Radziuk, A. Skirtach, G. Sukhorukov, D. Shchukin, H. Mohwald, Macromol. Rapid Commun., 28, 848 (2007).
    [71] L. Longenberger, G. Mills, J. Phys. Chem. B, 99, 475 (1995).
    [72] N. H. Kim, J. Y. Kim, K. J. Ihn, J. Nanosci. Nanotechnol., 7, 3805 (2007).
    [73] S. Pieraccini, M. I. Donnoli, A. Ferrarini, G. Gottarelli, G. Licini, C. Rosini, S. Superchi, G. P. Spada. J. Org. Chem., 68, 519 (2003).
    [74] L. Kutulya, V. Vashchenko, G. Semenkova, N. Shkolnikova. Mol. Cryst. Liq. Cryst., 331, 583 (1999).
    [75] R. Manohar, J. P. Shukla, J. Phys. Chem. Solids, 65, 1647 (2004).

    Ch7

    [1] L. Liao, K. Liu, W. Wang, X. Bai, E. Wang, Y. Liu, J. Li, C. Liu, J. Am. Chem. Soc., 129, 9562 (2007).
    [2] C. Pan, D. Zhang, L. Shi, J. Fang, Eur. J. Inorg. Chem., 15, 2429 (2008).
    [3] B. N. Khlebtsov, N. G. Khlebtsov, J. Phys. Chem. C, 111, 11516 (2007).
    [4] Y. Lan, X. P. Gao, H. Y. Zhu, Z. F. Zheng, T. Y. Yan, F. Wu, S. P. Ringer, D. Y. Song, Adv. Funct. Mater., 15, 1310 (2005).
    [5] J. Gou, M. Chipara, J. M. Zaleski, Chem. Mater., 19, 1755 (2007).
    [6] X. Yang, Y. Chen, R. Yuan, G. Chen, E. Blanco, J. Gao, X. Shuai, Polymer, 49, 477 (2008).
    [7] H. Takeshita, K. Fukumoto, T. Ohnishi, T. Ohkubo, M. Miya, K. Takenaka, T. Shiomi, Polymer, 47, 8210 (2006).
    [8] N. Hoang, S. Kumar, G. H. Kim, Nanotechnology, 20, 125607 (2009).
    [9] W. Tjandra, J. Yao, P. Ravi, K. C. Tam, A. Alamsjah, Chem. Mater., 17, 4865 (2005).
    [10] E. Pollet, C. Delcourt, M. Alexandre, P. Dubois, Macromol. Chem. Phys., 205, 2235 (2004).
    [11] J. Burdick, E. Alonas, H. C. Chuang, K. Rege, J. Wang, Nanotechnology, 20, 065306 (2009).
    [12] B. H. Sohn, S. I. Yoo, B. W. Seo, S. H. Yun, S. M. Park, J. Am. Chem. Soc., 123, 12734 (2001).
    [13] R. Waele, A. F. Koenderink, A. Polman, Nano Lett., 7, 2004 (2007).
    [14] S. V. Graeter, J. Huang, N. Perschmann, L. G. Mόnica, H. Kessler, J. Ding, J. P. Spatz, Nano Lett., 7, 1413 (2007).
    [15] E. J. Garcia, A. J. Hart, B. L. Wardle, A. H. Slocum, Nanotechnology, 18, 165602 (2007).
    [16] L. L. Neeta, R. Ramakrishnan, B. Li, S. Subramanian, R. S. Barhate, Y. Liu, S. Ramakrishnan, Biotechnol. Bioeng., 97, 1357 (2007).
    [17] A. C. Patel, S. Li, C. Wang, W. Zhang, Y. Wei, Chem. Mater., 19, 1231 (2007).
    [18] M. J. Edmondson, W. Zhou, S. A. Sieber, I. P. Jones, I. Gameson, P. A. Anderson, P. P. Edwards, Adv. Mater., 13, 1608 (2001).
    [19] G. Zhang, D. Wang, H. Möhwald, Nano Lett., 7, 3410 (2007).
    [20] C. M. Hangarter, Y. Rheem, B. Yoo, E. Yang, N. Myung, Nanotechnology, 18, 205305 (2007).
    [21] C. Gao, C. D. Vo, Y. Z. Jin, W. Li, S. P. Armes, Macromolecules, 38, 8634 (2005).
    [22] C. H. Hsia, M. Y. Yen, C. C. Lin, H. T. Chiu, C. Y. Lee, J. Am. Chem. Soc., 125, 9940 (2003).
    [23] P. R. Evans, R. Kullock, W. R. Hendren, R. Atkinson, R. J. Pollard, L. M. Eng, Adv. Funct. Mater., 18, 1075 (2008).
    [24] J. H. Liu, C. Y. Tsai, Y. H. Chiu, F. M. Hsieh, Nanotechnology, 20, 035301 (2009).
    [25] Y. W. Kim, D. K. Lee, K. J. Lee, B. R. Min, J. H. Kim, J. Polym. Sci. Part B: Polym. Phys., 45, 1283 (2007).
    [26] X. Z. Lin, A. D. Terepka, H. Yang, Nano Lett., 4, 2227 (2004).
    [27] Y. Lu, G. L. Liu, L. P. Lee, Nano Lett., 5, 5 (2005).
    [28] J. Du, S. P. Armes, J. Am. Chem. Soc., 127, 12800 (2005).
    [29] J. S. Wang, K. J. Matyjaszewski, Am. Chem. Soc., 117, 5614 (1995).
    [30] K. Matyjaszewski, J. H. Xia, Chem. Rev., 101, 2921 (2001).
    [31] M. Kamigaito, T. Ando, M. Sawamoto, Chem. Rev., 101, 3689 (2001).
    [32] H. Mori, A. H. E. Müller, Prog. Polym. Sci., 28, 1403 (2003).
    [33] H. Ito, M. Ueda, Macromolecules, 21, 1475 (1988).
    [34] E. Östmark, S. Harrisson, K. L. Wooley, E. E. Malmström, Biomacromolecules, 8, 1138 (2007).

    下載圖示 校內:2012-01-04公開
    校外:2012-01-04公開
    QR CODE