| 研究生: |
吳俊昇 Wu, Chun-Sheng |
|---|---|
| 論文名稱: |
對染料敏化太陽能電池內以三苯胺結構為基礎的染料分子再微調之設計:理論的觀點 The Design of Refined Triphenylamine-Based Dyes for Dye-Sensitized Solar Cells: Theoretical Perspective |
| 指導教授: |
王小萍
Wang, Shao-Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 205 |
| 中文關鍵詞: | 染料敏化太陽能電池 、三苯胺 、天然鍵性軌域 |
| 外文關鍵詞: | Dye-Sensitized Solar Cells, Triphenylamine, Natural bond orbital |
| 相關次數: | 點閱:95 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究第一次確立 DFT/B3LYP 計算對現今染料太陽能電池 (DSSCs)研究領域,包括含苯基的共軛化合物 (phenyl conjuration compounds) 、香豆素衍生物 (coumarin derivatives) 與三苯胺衍生物 (triphenylamine derivatives) 染料分子,是可以提供可靠的物理量。其中的三苯胺衍生物除了 HOMOs 能量較高的缺點之外,是具有潛力並且熱門的染料分子。經由利用化學取代以調整 π-type molecular orbitals (MOs) 之研究,傳統概念中氟的拉電子 (electron-withdrawing) 特性是不足以描述利用氟取代以穩定 π-type MOs 能量失敗的結果。另外,三氟甲基接受 π-type MOs電子 (π-accepting) 之特性,則是依照它的電負度而所預期得到的效果,卻不管其負超共軛 (negative hyperconjugation, NHC) 論點中已確立的 π-accepting 之性質。在此,將利用這兩種取代基來調整以三苯胺結構為基礎的染料分子其 HOMO/LUMO 能量。
MO 能量變化是由於取代基位置的不同所造成,有此可證氟也具有不穩定 MO 的效應 (MO-destabilization effects) 。當氟所在的碳,其對 MO 的貢獻越高時,就會就會造成 MO 能量下降的比較,或是較高的 MO 能量。而對於 HOMO 的影響是來的比 LUMO 還要顯著,這是因為 HOMO 能量上是比較接近氟的價殼層 p orbital,即 2p(F) 。而 p orbital 的推升 HOMO/LUMO 之效應可以利用 LCBO-MO 分析進行解釋,其分析則利用 Weinhold 的 NBO 方法對 DFT 波函數進行鍵結軌域 (bond orbital) 或是定域化 MOs (localized MOs) 分析可獲得。當氟化後,其氟的一中心鍵結軌域 2p(F) 有較高之貢獻值時,就會造成較高的 HOMO 或是 LUMO 軌域能量。這種 2p(F) 與 HOMO/LUMO 之間的交互作用造成的能量抬升,可視為 MO 的變化是伴隨著廣為人知的中介效應 (mesomeric effect,也稱作共振或是共軛效應)所造成的影響。
此外,三氟甲基的反鍵結 CF bond,即 *CF ,也會參與衍生物 HOMO/LUMO 的混成。 *CF 扮演 π-accepting 造成 HOMO/LUMO 能量的下降,這和 NHC 論點是一樣的,並且會與 2p(F) 所造成的推升效果相互抵消。上述經由 pi-framework 影響 MO 能量的雙重特性,是可以解釋用三氟甲基調整磷光顏色文獻中所提出 “純粹誘導效應” 之結論。還有,立體效應效應會造成異常於上述電子效應的 MOs 能量上升,這與實驗室另一項調整 Ir(III) 錯合物螢光能量之研究,是不謀而合的。
The DFT/B3LYP calculations have first been confirmed to provide reliable physical quantities published recently in the area of DSSC studies. The triphenylamine derivatives are promising and popular dyes except their high-lying HOMOs. Through the studies of adjusting the energies of pi-type molecular orbitals using chemical substitution, the conventional electron-withdrawing nature of fluoro suffers poor to failure results in view of lowering pi-type MOs. Conversely, the pi-accepting nature of a trifluoromethyl group gives results complying with expected effects based on its EN values despite of its pi-accepting nature well established by the negative hyperconjugation argument. The two substituents have been adapted for modifying the levels of HOMO/LUMO of the Triphenylamine-based dyes.
The MO-destabilization effects exerted by a fluoro have been verified through the site-dependent observation of MO-energy variations. As it is introduced at a carbon having more contribution to the MO wavefunction, the lowering extent gets smaller or would even lead to a higher MO energy. This is more pronounced for HOMO than for LUMO since the former is closer in energy to the valence p-orbital of fluorine, 2p(F). The pushing-up effect of p-orbital on HOMO/LUMO can be explained by analysis of LCBO-MO, in which the bond orbitals or localized MOs are extracted from the DFT wavefunctions by the Weinhold’s NBO method. Fluorination performed at a carbon having higher value of the one-center BO, 2p(F), results in a higher MO-energy of HOMO or LUMO. This destabilization described by the orbital interaction between 2p(F) and HOMO/LUMO can be viewed as the MO-variations accompanied by the well known mesomeric (also termed as resonance or conjugation) effect.
In addition to the CF anti-bonding, *CF, the 2p(F) BO of a trifluoromethyl group also contributes to HOMO/LUMO of the derivatives. The pi-accepting role played by *CF, which would press down HOMO/LUMO according to NHC argument, is offset by the 2p(F) destabilization effect. This dual nature, which affects MO-energies via pi-framework, explains the reported “purely inductive effect” found for color-tuning using trifluoromethyl group. As well as we have found for tuning phosphorescent energies of Ir(III) complexes, the steric effect would operate as the exceptional destabilization of MOs is found based on the above-stated electronic effects.
1. Woolfson, M., The origin and evolution of the solar system. Astron. & Geophys. 2000, 41 (1), 12-19.
2. Basu, S.; Antia, H. M., Helioseismology and solar abundances. Phys. Rep. 2008, 457 (5-6), 217-283.
3. Williams, D. R.. Sun Fact Sheet. NASA.
4. http://www.pmodwrc.ch/pmod.php?topic=tsi/composite/SolarConstant.
5. Oregan, B.; Gratzel, M., A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 1991, 353 (6346), 737-740.
6. Gao, F. F.; Wang, Y.; Zhang, J.; Shi, D.; Wang, M. K.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Gratzel, M., A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell. Chem. Commun.. 2008 (23), 2635-2637.
7. Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M., Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 2001, 123 (8), 1613-1624.
8. Gratzel, M., Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photoch. Photobio. A-Chem. 2004, 164 (1-3), 3-14.
9. Hagfeldt, A.; Gratzel, M., Molecular photovoltaics. Accounts Chem. Res. 2000, 33 (5), 269-277.
10. Huang, S. Y.; Schlichthorl, G.; Nozik, A. J.; Gratzel, M.; Frank, A. J., Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 1997, 101 (14), 2576-2582.
11. Nazeeruddin, M. K.; Zakeeruddin, S. M.; Humphry-Baker, R.; Jirousek, M.; Liska, P.; Vlachopoulos, N.; Shklover, V.; Fischer, C. H.; Gratzel, M., Acid-base equilibria of (2,2 '-bipyridyl-4,4 '-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorg. Chem. 1999, 38 (26), 6298-6305.
12. Argazzi, R.; Bignozzi, C. A.; Heimer, T. A.; Castellano, F. N.; Meyer, G. J., Enhanced Spectral Sensitivity from Ruthenium(Ii) Polypyridyl Based Photovoltaic Devices. Inorg. Chem. 1994, 33 (25), 5741-5749.
13. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphrybaker, R.; Muller, E.; Liska, P.; Vlachopoulos, N.; Gratzel, M., Conversion of Light to Electricity by Cis-X2bis(2,2'-Bipyridyl-4,4'-Dicarboxylate)Ruthenium(Ii) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, Cn-, and Scn-) on Nanocrystalline TiO2 Electrodes. J. Am. Chem. Soc. 1993, 115 (14), 6382-6390.
14. Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Bessho, T.; Gratzel, M., Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 2005, 127 (48), 16835-16847.
15. Nazeeruddin, M. K.; Splivallo, R.; Liska, P.; Comte, P.; Gratzel, M., A swift dye uptake procedure for dye sensitized solar cells. Chem. Commun. 2003 (12), 1456-1457.
16. Nazeeruddin, M. K.; Pechy, P.; Gratzel, M., Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex. Chem. Commun. 1997 (18), 1705-1706.
17. Ogura, R. Y.; Nakane, S.; Morooka, M.; Orihashi, M.; Suzuki, Y.; Noda, K., High-performance dye-sensitized solar cell with a multiple dye system. Appl. Phys. Lett. 2009, 94 (7), 073308-1-073308-3.
18. Wang, P.; Zakeeruddin, S. M.; Exnar, I.; Gratzel, M., High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem. Commun. 2002 (24), 2972-2973.
19. Wang, P.; Wenger, B.; Humphry-Baker, R.; Moser, J. E.; Teuscher, J.; Kantlehner, W.; Mezger, J.; Stoyanov, E. V.; Zakeeruddin, S. M.; Gratzel, M., Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids. J. Am. Chem. Soc. 2005, 127 (18), 6850-6856.
20. Hagfeldt, A.; Gratzel, M., Light-Induced Redox Reactions in Nanocrystalline Systems. Chem. Rev. 1995, 95 (1), 49-68.
21. Ferrere, S.; Zaban, A.; Gregg, B. A., Dye sensitization of nanocrystalline tin oxide by perylene derivatives. J. Phys. Chem. B 1997, 101 (23), 4490-4493.
22. Ferrere, S.; Gregg, B. A., New perylenes for dye sensitization of TiO2. New J. Chem. 2002, 26 (9), 1155-1160.
23. Edvinsson, T.; Li, C.; Pschirer, N.; Schoneboom, J.; Eickemeyer, F.; Sens, R.; Boschloo, G.; Herrmann, A.; Mullen, K.; Hagfeldt, A., Intramolecular charge-transfer tuning of perylenes: Spectroscopic features and performance in Dye-sensitized solar cells. J. Phys. Chem. C 2007, 111 (42), 15137-15140.
24. Jayaweera, P. M.; Kumarasinghe, A. R.; Tennakone, K., Nano-porous TiO2 photovoltaic cells sensitized with metallochromic triphenylmethane dyes: [n-TiO2/triphenylmethane dye/pI-/I-3 (or CuI)]. J. Photoch. Photobio. A-Chem. 1999, 126 (1-3), 111-115.
25. Sanchez-de-Armas, R.; San-Miguel, M. A.; Oviedo, J.; Sanz, J. F., Molecular modification of coumarin dyes for more efficient dye sensitized solar cells. J. Chem. Phys. 2012, 136 (19).
26. Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H., Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B 2003, 107 (2), 597-606.
27. Wang, Z. S.; Cui, Y.; Dan-Oh, Y.; Kasada, C.; Shinpo, A.; Hara, K., Molecular Design of Coumarin Dyes for Stable and Efficient Organic Dye-Sensitized Solar Cells. J. Phys. Chem. C 2008, 112 (43), 17011-17017.
28. Wang, Z. S.; Cui, Y.; Hara, K.; Dan-Oh, Y.; Kasada, C.; Shinpo, A., A high-light-harvesting-efficiency coumarin dye for stable dye-sensitized solar cells. Adv. Mater. 2007, 19 (8), 1138-1141.
29. Sarhangi, O. M.; Hashemianzadeh, S. M.; Waskasi, M. M.; Harzandi, A. P., A high-light-harvesting-efficiency of NKX-2593 and NKX-2883 Coumarin dyes in a local electric field: Can a local electric field enhance dye sensitizer solar cells efficiently? J. Photoch. Photobio. A-Chem. 2011, 225 (1), 95-105.
30. Cave, R. J.; Castner, E. W., Time-dependent density functional theory investigation of the ground and excited states of coumarins 102, 152, 153, and 343. J. Phys. Chem. A 2002, 106 (50), 12117-12123.
31. Sayama, K.; Tsukagoshi, S.; Hara, K.; Ohga, Y.; Shinpou, A.; Abe, Y.; Suga, S.; Arakawa, H., Photoelectrochemical properties of J aggregates of benzothiazole merocyanine dyes on a nanostructured TiO2 film. J. Phys. Chem. B 2002, 106 (6), 1363-1371.
32. Sayama, K.; Hara, K.; Mori, N.; Satsuki, M.; Suga, S.; Tsukagoshi, S.; Abe, Y.; Sugihara, H.; Arakawa, H., Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain. Chem Commun 2000 (13), 1173-1174.
33. Ito, S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska, P.; Comte, P.; Pechy, P.; Graetzel, M., High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chem Commun 2008 (41), 5194-5196.
34. Horiuchi, T.; Miura, H.; Uchida, S., Highly efficient metal-free organic dyes for dye-sensitized solar cells. J. Photoch. Photobio. A-Chem. 2004, 164 (1-3), 29-32.
35. Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S., High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J. Am. Chem. Soc. 2004, 126 (39), 12218-12219.
36. Ma, X. M.; Hua, J. L.; Wu, W. J.; Jin, Y. H.; Meng, F. S.; Zhan, W. H.; Tian, H., A high-efficiency cyanine dye for dye-sensitized solar cells. Tetrahedron 2008, 64 (2), 345-350.
37. Ehret, A.; Stuhl, L.; Spitler, M. T., Variation of carboxylate-functionalized cyanine dyes to produce efficient spectral sensitization of nanocrystalline solar cells. Electrochim. Acta 2000, 45 (28), 4553-4557.
38. Meng, F. S.; Yao, Q. H.; Shen, J. G.; Li, F. L.; Huang, C. H.; Chen, K. C.; Tian, H., Novel cyanine dyes with multi-carboxyl groups and their sensitization on nanocrystalline TiO2 electrode. Synthetic Met. 2003, 137 (1-3), 1543-1544.
39. Wu, W. J.; Hua, J. L.; Jin, Y. H.; Zhan, W. H.; Tian, H., Photovoltaic properties of three new cyanine dyes for dye-sensitized solar cells. Photoch. & Photobio. Sci. 2008, 7 (1), 63-68.
40. Tang, J.; Wu, W. J.; Hua, J. L.; Li, J.; Li, X.; Tian, H., Starburst triphenylamine-based cyanine dye for efficient quasi-solid-state dye-sensitized solar cells. Energy & Environ. Sci. 2009, 2 (9), 982-990.
41. Liang, M.; Xu, W.; Cai, F. S.; Chen, P. Q.; Peng, B.; Chen, J.; Li, Z. M., New triphenylamine-based organic dyes for efficient dye-sensitized solar cells. J. Phys. Chem. C 2007, 111 (11), 4465-4472.
42. Xu, W.; Peng, B.; Chen, J.; Liang, M.; Cai, F., New triphenylamine-based dyes for dye-sensitized solar cells. J. Phys. Chem. C 2008, 112 (3), 874-880.
43. Li, G.; Jiang, K. J.; Li, Y. F.; Li, S. L.; Yang, L. M., Efficient structural modification of triphenylamine-based organic dyes for dye-sensitized solar cells. J. Phys. Chem. C 2008, 112 (30), 11591-11599.
44. Tian, H. N.; Yang, X. C.; Chen, R. K.; Zhang, R.; Hagfeldt, A.; Sunt, L. C., Effect of different dye baths and dye-structures on the performance of dye-sensitized solar cells based on triphenylamine dyes. J. Phys. Chem. C 2008, 112 (29), 11023-11033.
45. Hagberg, D. P.; Yum, J. H.; Lee, H.; De Angelis, F.; Marinado, T.; Karlsson, K. M.; Humphry-Baker, R.; Sun, L. C.; Hagfeldt, A.; Gratzel, M.; Nazeeruddin, M. K., Molecular engineering of organic sensitizers for dye-sensitized solar cell applications. J. Am. Chem. Soc. 2008, 130 (19), 6259-6266.
46. Velusamy, M.; Thomas, K. R. J.; Lin, J. T.; Hsu, Y. C.; Ho, K. C., Organic dyes incorporating low-band-gap chromophores for dye-sensitized solar cells. Org. Lett. 2005, 7 (10), 1899-1902.
47. Keis, K.; Bauer, C.; Boschloo, G.; Hagfeldt, A.; Westermark, K.; Rensmo, H.; Siegbahn, H., Nanostructured ZnO electrodes for dye-sensitized solar cell applications. J. Photoch. Photobio. A-Chem. 2002, 148 (1-3), 57-64.
48. Saito, M.; Fujihara, S., Large photocurrent generation in dye-sensitized ZnO solar cells. Energy & Environ. Sci. 2008, 1 (2), 280-283.
49. Prasittichai, C.; Hupp, J. T., Surface Modification of SnO2 Photoelectrodes in Dye-Sensitized Solar Cells: Significant Improvements in Photovoltage via Al2O3 Atomic Layer Deposition. J. Phys. Chem. Lett. 2010, 1 (10), 1611-1615.
50. Lenzmann, F.; Krueger, J.; Burnside, S.; Brooks, K.; Gratzel, M.; Gal, D.; Ruhle, S.; Cahen, D., Surface photovoltage spectroscopy of dye-sensitized solar cells with TiO2, Nb2O5, and SrTiO3 nanocrystalline photoanodes: Indication for electron injection from higher excited dye states. J. Phys. Chem. B 2001, 105 (27), 6347-6352.
51. Sayama, K.; Sugihara, H.; Arakawa, H., Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye. Chem. Mater. 1998, 10 (12), 3825-3832.
52. Ito, S.; Ha, N. L. C.; Rothenberger, G.; Liska, P.; Comte, P.; Zakeeruddin, S. M.; Pechy, P.; Nazeeruddin, M. K.; Gratzel, M., High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chem. Commun. 2006 (38), 4004-4006.
53. Sauvage, F.; Di Fonzo, F.; Bassi, A. L.; Casari, C. S.; Russo, V.; Divitini, G.; Ducati, C.; Bottani, C. E.; Comte, P.; Graetzel, M., Hierarchical TiO2 Photoanode for Dye-Sensitized Solar Cells. Nano. Lett. 2010, 10 (7), 2562-2567.
54. Katoh, R.; Furube, A.; Yoshihara, T.; Hara, K.; Fujihashi, G.; Takano, S.; Murata, S.; Arakawa, H.; Tachiya, M., Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J. Phys. Chem. B 2004, 108 (15), 4818-4822.
55. Kitamura, T.; Ikeda, M.; Shigaki, K.; Inoue, T.; Anderson, N. A.; Ai, X.; Lian, T. Q.; Yanagida, S., Phenyl-conjugated oligoene sensitizers for TiO2 solar cells. Chem. Mater. 2004, 16 (9), 1806-1812.
56. Tian, H. N.; Yang, X. C.; Chen, R. K.; Pan, Y. Z.; Li, L.; Hagfeldt, A.; Sun, L. C., Phenothiazine derivatives for efficient organic dye-sensitized solar cells. Chem. Commun. 2007 (36), 3741-3743.
57. Kuciauskas, D.; Freund, M. S.; Gray, H. B.; Winkler, J. R.; Lewis, N. S., Electron transfer dynamics in nanocrystalline titanium dioxide solar cells sensitized with ruthenium or osmium polypyridyl complexes. J. Phys. Chem. B 2001, 105 (2), 392-403.
58. Qin, H.; Wenger, S.; Xu, M.; Gao, F.; Jing, X.; Wang, P.; Zakeeruddin, S. M.; Gratzel, M., An organic sensitizer with a fused dithienothiophene unit for efficient and stable dye-sensitized solar cells. J. Am. Chem. Soc. 2008, 130 (29), 9202-9203.
59. Song, W. J.; Brennaman, M. K.; Concepcion, J. J.; Jurss, J. W.; Hoertz, P. C.; Luo, H. L.; Chen, C. C.; Hanson, K.; Meyer, T. J., Interfacial Electron Transfer Dynamics for [Ru(bpy)(2)((4,4 '-PO3H2)(2)bpy)](2+) Sensitized TiO2 in a Dye-Sensitized Photoelectrosynthesis Cell: Factors Influencing Efficiency and Dynamics. J. Phys. Chem. C 2011, 115 (14), 7081-7091.
60. Nazeeruddin, M. K.; Zakeeruddin, S. M.; Humphry-Baker, R.; Kaden, T. A.; Gratzel, M., Determination of pKa values of 4-phosphonato-2,2 ': 6 ',2 '-terpyridine and its ruthenium(II)-based photosensitizer by NMR, potentiometric, and spectrophotometric methods. Inorg. Chem. 2000, 39 (20), 4542-4547.
61. Wang, Z. S.; Li, F. Y.; Huang, C. H.; Wang, L.; Wei, M.; Jin, L. P.; Li, N. Q., Photoelectric conversion properties of nanocrystalline TiO2 electrodes sensitized with hemicyanine derivatives. J. Phys. Chem. B 2000, 104 (41), 9676-9682.
62. Wang, Z. S.; Li, F. Y.; Huang, C. H., Photocurrent enhancement of hemicyanine dyes containing RSO3- group through treating TiO2 films with hydrochloric acid. J. Phys. Chem. B 2001, 105 (38), 9210-9217.
63. Yao, Q. H.; Shan, L.; Li, F. Y.; Yin, D. D.; Huang, C. H., An expanded conjugation photosensitizer with two different adsorbing groups for solar cells. New J. Chem. 2003, 27 (8), 1277-1283.
64. Ellingson, R. J.; Asbury, J. B.; Ferrere, S.; Ghosh, H. N.; Sprague, J. R.; Lian, T. Q.; Nozik, A. J., Dynamics of electron injection in nanocrystalline titanium dioxide films sensitized with [Ru(4,4 '-dicarboxy-2,2 '-bipyridine)2(NCS)2] by infrared transient absorption. J. Phys. Chem. B 1998, 102 (34), 6455-6458.
65. Anderson, N. A.; Lian, T., Ultrafast electron injection from metal polypyridyl complexes to metal-oxide nanocrystalline thin films. Coordin. Chem. Rev. 2004, 248 (13-14), 1231-1246.
66. Hannappel, T.; Burfeindt, B.; Storck, W.; Willig, F., Measurement of ultrafast photoinduced electron transfer from chemically anchored Ru-dye molecules into empty electronic states in a colloidal anatase TiO2 film. J. Phys. Chem. B 1997, 101 (35), 6799-6802.
67. Bauer, C.; Boschloo, G.; Mukhtar, E.; Hagfeldt, A., Electron injection and recombination in Ru(dcbpy)(2)(NCS)(2) sensitized nanostructured ZnO. J. Phys. Chem. B 2001, 105 (24), 5585-5588.
68. Ramakrishna, G.; Verma, S.; Jose, D. A.; Kumar, D. K.; Das, A.; Palit, D. K.; Ghosh, H. N., Interfacial electron transfer between the photoexcited porphyrin molecule and TiO2 nanoparticles: Effect of catecholate binding. J. Phys. Chem. B 2006, 110 (18), 9012-9021.
69. Crabtree, G. W.; Lewis, N. S., Solar energy conversion. Phys. Today 2007, 60 (3), 37-42.
70. Kalyanasundaram, K.; Gratzel, M., Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coordin. Chem. Rev. 1998, 177, 347-414.
71. Cahen, D.; Hodes, G.; Gratzel, M.; Guillemoles, J. F.; Riess, I., Nature of photovoltaic action in dye-sensitized solar cells. J. Phys. Chem. B 2000, 104 (9), 2053-2059.
72. Hara, K.; Kurashige, M.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H., Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New J. Chem. 2003, 27 (5), 783-785.
73. Thomas, K. R. J.; Hsu, Y. C.; Lin, J. T.; Lee, K. M.; Ho, K. C.; Lai, C. H.; Cheng, Y. M.; Chou, P. T., 2,3-disubstituted thiophene-based organic dyes for solar cells. Chem. Mater. 2008, 20 (5), 1830-1840.
74. Kwon, T. H.; Armel, V.; Nattestad, A.; MacFarlane, D. R.; Bach, U.; Lind, S. J.; Gordon, K. C.; Tang, W. H.; Jones, D. J.; Holmes, A. B., Dithienothiophene (DTT)-Based Dyes for Dye-Sensitized Solar Cells: Synthesis of 2,6-Dibromo-DTT. J. Org. Chem. 2011, 76 (10), 4088-4093.
75. Pastore, M.; Mosconi, E.; De Angelis, F.; Gratzel, M., A Computational Investigation of Organic Dyes for Dye-Sensitized Solar Cells: Benchmark, Strategies, and Open Issues. J. Phys. Chem. C 2010, 114 (15), 7205-7212.
76. Hwang, S.; Lee, J. H.; Park, C.; Lee, H.; Kim, C.; Park, C.; Lee, M. H.; Lee, W.; Park, J.; Kim, K.; Park, N. G.; Kim, C., A highly efficient organic sensitizer for dye-sensitized solar cells. Chem. Commun. 2007 (46), 4887-4889.
77. Hara, K.; Sayama, K.; Ohga, Y.; Shinpo, A.; Suga, S.; Arakawa, H., A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%. Chem. Commun. 2001 (6), 569-570.
78. Haque, S. A.; Handa, S.; Peter, K.; Palomares, E.; Thelakkat, M.; Durrant, J. R., Supermolecular control of charge transfer in dye-sensitized nanocrystalline TiO2 films: Towards a quantitative structure-function relationship. Angew. Chem. Int. Edit. 2005, 44 (35), 5740-5744.
79. Clifford, J. N.; Palomares, E.; Nazeeruddin, M. K.; Gratzel, M.; Nelson, J.; Li, X.; Long, N. J.; Durrant, J. R., Molecular control of recombination dynamics in dye-sensitized nanocrystalline TiO2 films: Free energy vs distance dependence. J. Am. Chem. Soc. 2004, 126 (16), 5225-5233.
80. Clifford, J. N.; Yahioglu, G.; Milgrom, L. R.; Durrant, J. R., Molecular control of recombination dynamics in dye sensitised nanocrystalline TiO2 films. Chem. Commun. 2002 (12), 1260-1261.
81. Khazraji, A. C.; Hotchandani, S.; Das, S.; Kamat, P. V., Controlling dye (Merocyanine-540) aggregation on nanostructured TiO2 films. An organized assembly approach for enhancing the efficiency of photosensitization. J. Phys. Chem. B 1999, 103 (22), 4693-4700.
82. Hara, K.; Wang, Z. S.; Sato, T.; Furube, A.; Katoh, R.; Sugihara, H.; Dan-Oh, Y.; Kasada, C.; Shinpo, A.; Suga, S., Oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B 2005, 109 (32), 15476-15482.
83. Wang, Z. S.; Hara, K.; Dan-Oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Arakawa, H.; Sugihara, H., Photophysical and (photo)electrochemical properties of a coutnarin dye. J. Phys. Chem. B 2005, 109 (9), 3907-3914.
84. Wang, Z. S.; Cui, Y.; Dan-Oh, Y.; Kasada, C.; Shinpo, A.; Hara, K., Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells: Electron lifetime improved by coadsorption of deoxycholic acid. J. Phys. Chem. C 2007, 111 (19), 7224-7230.
85. Hara, K.; Kurashige, M.; Ito, S.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H., Novel polyene dyes for highly efficient dye-sensitized solar cells. Chem. Commun. 2003 (2), 252-253.
86. Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Yoshihara, T.; Murai, M.; Kurashige, M.; Ito, S.; Shinpo, A.; Suga, S.; Arakawa, H., Novel conjugated organic dyes for efficient dye-sensitized solar cells. Adv. Funct. Mater. 2005, 15 (2), 246-252.
87. Chen, Y. S.; Zeng, Z. H.; Li, C.; Wang, W. B.; Wang, X. S.; Zhang, B. W., Highly efficient co-sensitization of nanocrystalline TiO2 electrodes with plural organic dyes. New J. Chem. 2005, 29 (6), 773-776.
88. Neale, N. R.; Kopidakis, N.; van de Lagemaat, J.; Gratzel, M.; Frank, A. J., Effect of a coadsorbent on the performance of dye-sensitized TiO2 solar cells: Shielding versus band-edge movement. J. Phys. Chem. B 2005, 109 (49), 23183-23189.
89. Ning, Z. J.; Zhang, Q.; Wu, W. J.; Pei, H. C.; Liu, B.; Tian, H., Starburst triarylamine based dyes for efficient dye-sensitized solar cells. J. Org. Chem. 2008, 73 (10), 3791-3797.
90. Hagberg, D. P.; Edvinsson, T.; Marinado, T.; Boschloo, G.; Hagfeldt, A.; Sun, L. C., A novel organic chromophore for dye-sensitized nanostructured solar cells. Chem. Commun. 2006 (21), 2245-2247.
91. Hara, K.; Dan-Oh, Y.; Kasada, C.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H., Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells. Langmuir 2004, 20 (10), 4205-4210.
92. Greijer, H.; Lindgren, J.; Hagfeldt, A., Resonance Raman scattering of a dye-sensitized solar cell: Mechanism of thiocyanato ligand exchange. J. Phys. Chem. B 2001, 105 (27), 6314-6320.
93. Hara, K.; Tachibana, Y.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H., Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes. Sol. Energ. Mat. Sol. C. 2003, 77 (1), 89-103.
94. She, C. X.; Guo, J. C.; Irle, S.; Morokuma, K.; Mohler, D. L.; Zabri, H.; Odobel, F.; Youm, K. T.; Liu, F.; Hupp, J. T.; Lian, T., Comparison of interfacial electron transfer through carboxylate and phosphonate anchoring Groups. J. Phys. Chem. A 2007, 111 (29), 6832-6842.
95. Wiberg, J.; Marinado, T.; Hagberg, D. P.; Sun, L. C.; Hagfeldt, A.; Albinsson, B., Effect of Anchoring Group on Electron Injection and Recombination Dynamics in Organic Dye-Sensitized Solar Cells. J. Phys. Chem. C 2009, 113 (9), 3881-3886.
96. Liu, W. H.; Wu, I. C.; Lai, C. H.; Lai, C. H.; Chou, P. T.; Li, Y. T.; Chen, C. L.; Hsu, Y. Y.; Chi, Y., Simple organic molecules bearing a 3,4-ethylenedioxythiophene linker for efficient dye-sensitized solar cells. Chem. Commun. 2008 (41), 5152-5154.
97. Singh, S. P.; Roy, M. S.; Thomas, K. R. J.; Balaiah, S.; Bhanuprakash, K.; Sharma, G. D., New Triphenylamine-Based Organic Dyes with Different Numbers of Anchoring Groups for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2012, 116 (9), 5941-5950.
98. Yao, Q. H.; Meng, F. S.; Li, F. Y.; Tian, H.; Huang, C. H., Photoelectric conversion properties of four novel carboxylated hemicyanine dyes on TiO2 electrode. J. Mater. Chem. 2003, 13 (5), 1048-1053.
99. Nazeeruddin, M. K.; Humphry-Baker, R.; Liska, P.; Gratzel, M., Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J. Phys. Chem. B 2003, 107 (34), 8981-8987.
100. Murakoshi, K.; Kano, G.; Wada, Y.; Yanagida, S.; Miyazaki, H.; Matsumoto, M.; Murasawa, S., Importance of Binding States between Photosensitizing Molecules and the TiO2 Surface for Efficiency in a Dye-Sensitized Solar-Cell. J. Electroanal. Chem. 1995, 396 (1-2), 27-34.
101. Martin, C.; Ziolek, M.; Marchena, M.; Douhal, A., Interfacial Electron Transfer Dynamics in a Solar Cell Organic Dye Anchored to Semiconductor Particle and Aluminum-Doped Mesoporous Materials. J. Phys. Chem. C 2011, 115 (46), 23183-23191.
102. Horiuchi, H.; Katoh, R.; Hara, K.; Yanagida, M.; Murata, S.; Arakawa, H.; Tachiya, M., Electron injection efficiency from excited N3 into nanocrystalline ZnO films: Effect of (N3-Zn2+) aggregate formation. J. Phys. Chem. B 2003, 107 (11), 2570-2574.
103. Benko, G.; Myllyperkio, P.; Pan, J.; Yartsev, A. P.; Sundstrom, V., Photoinduced electron injection from Ru(dcbPY)2(NCS)2 to SnO2 and TiO2 nanocrystalline films. J. Am. Chem. Soc. 2003, 125 (5), 1118-1119.
104. Asbury, J. B.; Hao, E.; Wang, Y. Q.; Ghosh, H. N.; Lian, T. Q., Ultrafast electron transfer dynamics from molecular adsorbates to semiconductor nanocrystalline thin films. J. Phys. Chem. B 2001, 105 (20), 4545-4557.
105. Asbury, J. B.; Ellingson, R. J.; Ghosh, H. N.; Ferrere, S.; Nozik, A. J.; Lian, T. Q., Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru(dcbpy)2(NCS)2 in solution and on nanocrystalline TiO2 and Al2O3 thin films. J. Phys. Chem. B 1999, 103 (16), 3110-3119.
106. 蘇煒林, 以密度泛函理論研究Cyclometalated Phenylpyridine銥(III)錯合物分子軌域. 國立成功大學化學研究所博士論文 2011.
107. Mishra, A.; Fischer, M. K. R.; Bauerle, P., Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules. Angew. Chem. Int. Edit. 2009, 48 (14), 2474-2499.
108. Nugent, W. A.; Harlow, R. L., Early Transition-Metal Alkoxide Complexes Bearing Homochiral Trialkanolamine Ligands. J. Am. Chem. Soc. 1994, 116 (14), 6142-6148.
109. Mcweeny, R.; Diercksen, G., Self-Consistent Perturbation Theory.II. Extension to Open Shells. J. Chem. Phys. 1968, 49 (11), 4852-4856.
110. Hohenberg, Pierre; Walter Kohn (1964). "Inhomogeneous electron gas". Phys. Rev. B 136 (3B): B864–B871.
111. Becke, A. D., A new inhomogeneity parameter in density-functional theory. J. Chem. Phys. 1998, 109 (6), 2092-2098.
112. Lee, C. T.; Yang, W. T.; Parr, R. G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density. Phys. Rev. B 1988, 37 (2), 785-789.
校內:2018-01-11公開