簡易檢索 / 詳目顯示

研究生: 陳相欣
Chen, Xiang-Xin
論文名稱: 應用克里金模型與基因演算法於預混衝擊噴流火焰操作最佳化之研究
A Study of the Optimization of Premixed Impinging Jet Flame Operations Using Kriging Model and Genetic Algorithm
指導教授: 吳志勇
Wu, Chih-Yung
陳瑞彬
Chen, Ray-Bing
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 191
中文關鍵詞: 甲烷預混火焰衝擊噴流火焰甲烷-氨氣預混火焰導引式燃燒器基於替代模型最佳化克里金模型基因演算法
外文關鍵詞: Methane premixed flame, Impinging jet flame, Methane-ammonia premixed flame, Piloted burner, Surrogate-based optimization, Kriging model, Genetic algorithm
相關次數: 點閱:64下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為實現燃燒與能源應用的可持續發展目標,研究人員一直致力於優化燃燒系統的效率與污染排放性能。燃燒系統的最佳化過程通常依賴大量的實驗或數值模擬分析。然而,效率和污染物排放是相互矛盾的,導致最佳化過程需要投入更多的時間與成本。本研究旨在應用基於替代模型最佳化(Surrogate-based optimization, SBO)方法,主要結合克里金模型(Kriging model, KM)和基因演算法(Genetic algorithm, GA),對具有潛力的導引式預混甲烷衝擊噴流火焰(Piloted premixed methane impinging jet flame, PPMIJF)進行操作參數最佳化。此外,隨著全世界對於淨零碳排的重視,在PPMIJF中添加無碳燃料-氨氣進行探討與分析。
    SBO的結果表明,最終建構的KM對於每個目標函數(熱效率、可用能效率,NO¬X和CO排放)的預測能力是可靠的。KM結合GA方法能夠有效地找出各自和綜合目標函數的最佳解,這表示可以找出高效率、低污染,以及兼顧效率與低污染排放的最佳操作參數。此外,KM的敏感性分析表明了,中心當量比對於每個目標函數的影響程度皆是最大的,遠大於其餘的操作參數。PPMIJF的熱效率、可用能效率以及CO排放隨著中心當量比增加而提升。NO¬X排放則在化學計量比條件達到峰值,由於最高的火焰溫度。PPMIJF的NO¬X排放,有90%是由熱式 (Thermal) NO和瞬式 (Prompt) NO形成路徑所貢獻的,並且由熱式NO路徑主導。此外,還探討噴嘴至平板距離的影響,適當的距離能夠進一步提升PPMIJF的效率,以及減少污染物排放。
    導引式預混甲烷-氨氣衝擊噴流火焰(Piloted premixed methane-ammonia impinging jet flame, PPMAIJF)的結果表明,在相同的總輸入功率和中心當量比情況下,氨氣添加量對熱效率和可用能效率的影響幾乎沒有明顯的變化。隨著氨氣添加量的增加,CO排放減少,NOX排放則迅速地提升。NOX排放在氨氣添加40%時達到最大值,隨後出現減少趨勢,由於NHi路徑消耗更多的NO。在固定相同的總輸入功率與氨氣添加量之情況下,隨著中心當量比的增加,提升了PPMAIJF的熱效率、可用能效率,以及CO排放。此外,還發現火焰錐尖端靠近或已接觸到衝擊板的情況,進一步提升了可用能效率,以及產生較多的CO排放。NOX排放在中心當量比為 0.8 時達到最大值,進一步增加至化學計量與富燃料條件,NOX排放迅速地下降,這主要歸因於HNO路徑的NO形成速率降低和NHi路徑的NO消耗速率加快。對於PPMAIJF的NOX排放,主要由NHi和HNO形成路徑主導,熱式NO形成路徑對其影響很小。在致力於達成淨零碳排放目標的情況下,PPMAIJF 在相同總輸入功率下,可以大幅減少 CO2 排放,同時保持與 PPMIJF 相似的效率。本研究為燃燒系統的操作最佳化提供一個有效率的方法框架及策略,並且提供氨氣添加對PPMIJF的性能影響,這將有助於燃燒與能源應用的可持續發展。

    Researchers have been committed to optimizing the efficiency and pollution emission performance of combustion systems to achieve the sustainable development goals of combustion and energy applications. The optimization process of combustion systems usually relies on analyzing a large number of experiments or numerical simulations. However, efficiency and pollutant emissions are contradictory, causing the optimization process to require more time and cost. This study aims to apply the surrogate-based optimization (SBO) method, mainly integrating the Kriging model (KM) and the genetic algorithm (GA), to conduct an optimization of operating parameters for the potential piloted premixed methane impinging jet flame (PPMIJF). In addition, as the world attaches great importance to net-zero carbon emissions, ammonia of carbon-free fuel is added to PPMIJF for analysis and exploration.
    The SBO results show that the predictive ability of the finally constructed KM for each objective function (thermal efficiency, exergy efficiency, and NOX and CO emissions) is reliable. The method based on combining KM and GA can efficiently find the optimal solution for the respective and integrated objective functions. In addition, the sensitivity analysis of KM indicates that the center equivalence ratio has the most significant influence on each objective function, which is much greater than the other operating parameters. The thermal efficiency, exergy efficiency, and CO emissions of PPMIJF increase as the center equivalence ratio rises. NOX emission peaks at the stoichiometric condition due to the highest flame temperature. 90% of the NOx emissions from PPMIJF are contributed by thermal NO and prompt NO formation routes and are dominated by the thermal NO route. In addition, the impact of the nozzle-to-plate distance is also discussed. An appropriate distance can further enhance the efficiency of PPMIJF and reduce pollutant emissions.
    The results of the piloted premixed methane-ammonia impinging jet flame (PPMAIJF) show that the effect of ammonia addition on thermal and exergy efficiency has almost no noticeable change at the same total input power and center equivalence ratio. CO emissions decrease, while NOX emissions increase sharply as the amount of ammonia added increases. NOX emissions reach the maximum value when ammonia is added at 40% and then show a decreasing trend due to the NHi route consuming more NO. At the same conditions of the total input power and ammonia addition amount, the thermal efficiency, exergy efficiency, and CO emissions increase as the center equivalence ratio increases. Furthermore, the flame cone tip is close to or in contact with the impinging plate, enhancing the exergy efficiency and producing more CO emissions. NOX emissions reach the maximum value when the center equivalence ratio is 0.8. Further increasing to stoichiometric and fuel-rich conditions, NOX emissions decrease sharply, mainly attributed to the reduced NO formation rate of the HNO route and the accelerated NO consumption rate of the NHi route. The fuel-NO formation route dominates NOX emissions for PPMAIJF, and the thermal NO route has minimal effect on them. Working towards net-zero carbon emissions targets, PPMAIJF can significantly reduce CO2 emissions while maintaining equivalent efficiency to PPMIJF at the same total input power. This study provides an efficient method framework and strategy for optimizing the operation of combustion systems and explores the effect of ammonia addition on the performance of PPMIJF, which will contribute to the sustainable development of combustion and energy applications.

    摘要 i 第一章 簡介 iv 第二章 文獻回顧 v 第三章 研究方法 vi 第四章 導引式預混甲烷衝擊噴流火焰 viii 第五章 導引式預混甲烷-氨氣衝擊噴流火焰 x 第六章 結論 xii ABSTRACT xv 誌謝 xix CONTENTS xxi LIST OF FIGURES xxv LIST OF TABLES xxx NOMENCLATURE xxxii CHAPTER Ⅰ INTRODUCTION 1 1-1 Background 1 1-2 Theis Outline 9 CHAPTER Ⅱ LITERATURE REVIEW 11 2-1 Methane and Ammonia Combustion 11 2-2 Piloted Premixed Flame 18 2-3 Impinging Jet Flame 21 2-4 Surrogate Model 26 2-5 Motivation and Objectives 30 CHAPTER Ⅲ METHODOLOGY 32 3-1 Experimental Setup and Method 32 3-2 Numerical Simulation 36 3-2-1 Governing Equations 36 3-2-2 Computational Domain, Boundary Conditions, and Mesh 38 3-2-3 Numerical Methods 42 3-2-4 Mesh Independence Testing 44 3-2-5 Validation of CFD Model 46 3-2-6 NOX Formation Routes 49 3-3 Optimization Problem 50 3-4 Surrogate-Based Optimization 56 3-4-1 Latin Hypercube Sampling 58 3-4-2 Kriging Model 60 3-4-3 Infilling Criteria 62 3-4-4 Genetic Algorithm 64 CHAPTER Ⅳ THE PILOTED PREMIXED METHANE IMPINGING JET FLAME 66 4-1 Optimization of Kriging Model 66 4-2 Effects of Operating Parameters on the Objective Functions 71 4-2-1 Effect of Coaxial Piloted Equivalence Ratio 72 4-2-2 Effect of Center Equivalence Ratio 74 4-2-3 Effect of Flow Rate of Coaxial Piloted Fuel 78 4-3 The Sensitivity Analysis of Operating Parameters 80 4-4 Optimization of Operating Parameters using Genetic Algorithm 81 4-5 Effects of Center Equivalence Ratio on PPMIJF 84 4-5-1 Effect of Center Equivalence Ratio on PPMIJF’s Efficiency 84 4-5-2 Effect of Center Equivalence Ratio on PPMIJF’s Pollutant Emissions. 88 4-6 Effects of Nozzle-to-Plate Distance on PPMIJF 96 4-6-1 Effect of Nozzle-to-Plate Distance on PPMIJF’s Efficiency 96 4-6-2 Effect of the Nozzle-to-Plate Distance on PPMIJF’s Pollutant Emissions 100 CHAPTER V THE PILOTED PREMIXED METHANE-AMMONIA IMPINGING JET FLAME 105 5-1 Effects of Ammonia Addition on PPMAIJF 105 5-1-1 Effect of Ammonia Addition on PPMAIJF’s Efficiency 106 5-1-2 Effect of Ammonia Addition on PPMAIJF’s Pollutant Emissions 110 5-2 Effects of Center Equivalence Ratio on PPMAIJF 117 5-2-1 Effect of Center Equivalence Ratio on PPMAIJF’s Efficiency 117 5-2-2 Effect of Center Equivalence Ratio on PPMAIJF’s Pollutant Emissions 121 5-3 Carbon Dioxide Emissions from PPMIJF and PPMAIJF 128 CHAPTER VI CONCLUSIONS AND SUGGESTIONS 130 6-1 Conclusions 130 6-2 Suggestions 133 REFERENCES 134

    An, Z., Zhang, M., Zhang, W., Mao, R., Wei, X., Wang, J., Huang, Z., Tan, H., 2021, “Emission prediction and analysis on CH4/NH3/air swirl flames with LES-FGM method,” Fuel, vol. 304, pp. 121370.
    Aoki, S., Yamazaki, H., 2007, “Combustion Mechanism of Rich-Lean Flame Burner Controlled Boundary Zone,” Heat Transfer Summer Conference, Vancouver, British Columbia, Canada.
    Ariemma, G. B., Sorrentino, G., Ragucci, R., de Joannon, M., Sabia, P., 2022, “Ammonia/Methane combustion: stability and NOx emissions,” Combustion and Flame, vol. 241, pp. 112071.
    Banerjee, A., Paul, D., 2021, “Developments and applications of porous medium combustion: A recent review,” Energy, vol. 221, pp. 119868.
    Baukal, C. E., Gebhart, B., 1997, “Surface condition effects on flame impingement heat transfer,” Experimental Thermal and Fluid Science, vol. 15(4), pp. 323-335.
    Berwal, P., Kumar, S., Khandelwal, B., 2021, “A comprehensive review on synthesis, chemical kinetics, and practical application of ammonia as future fuel for combustion,” Journal of the Energy Institute, vol. 99, pp. 273-298.
    Cai, T., Zhao, D., Gutmark, E., 2023, “Overview of fundamental kinetic mechanisms and emission mitigation in ammonia combustion,” Chemical Engineering Journal, vol. 458, pp. 141391.
    Cellek, M. S., 2022, “The decreasing effect of ammonia enrichment on the combustion emission of hydrogen, methane, and propane fuels,” International Journal of Hydrogen Energy, vol. 47(45), pp. 19916-19934.
    Chai, W. S., Bao, Y., Jin, P., Tang, G., Zhou, L., 2021, “A review on ammonia, ammonia-hydrogen and ammonia-methane fuels,” Renewable and Sustainable Energy Reviews, vol. 147, pp. 111254.
    Chander, S., Ray, A., 2005, “Flame impingement heat transfer: a review,” Energy Conversion and Management, vol. 46(18-19), pp. 2803-2837.
    Chander, S., Ray, A., 2006, “Influence of burner geometry on heat transfer characteristics of methane/air flame impinging on flat surface,” Experimental Heat Transfer, vol. 19(1), pp. 15-38.
    Chander, S., Ray, A., 2011, “Experimental and numerical study on the occurrence of off-stagnation peak in heat flux for laminar methane/air flame impinging on a flat surface,” International Journal of Heat and Mass Transfer, vol. 54(5-6), pp. 1179-1186.
    Chen, X. X., Chen, R. B., Wu, C. Y., 2024, “Prediction and Optimization of Heat Transfer Performance of Premixed Methane Impinging Flame Jet Using the Kriging Model and Genetic Algorithm,” Applied Sciences, vol. 14(9), pp. 3731.
    Chung, S. Y., Venkatramanan, S., Elzain, H. E., Selvam, S., Prasanna, M. V., 2019, “Supplement of missing data in groundwater-level variations of peak type using geostatistical methods,” GIS and geostatistical techniques for groundwater science, vol., pp. 33-41.
    Coulomb, J. L., Kobetski, A., Caldora Costa, M., Mare´ chal, Y., Jo¨ nsson, U., 2003, “Comparison of radial basis function approximation techniques,” COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, vol. 22(3), pp. 616-629.
    Cremers, M. F. G., Remie, M. J., Schreel, K. R. A. M., de Goey, L. P. H., 2010, “Thermochemical heat release of laminar stagnation flames of fuel and oxygen,” International Journal of Heat and Mass Transfer, vol. 53(5-6), pp. 952-961.
    Cui, Y., Zhang, L., Yu, C., Yin, P., Liu, Y., 2022, “Experimental Study on the Emission Performance of Lean Premixed Bunsen Flame with Piloted Rich Premixed Flame,” Journal of Physics: Conference Series.
    de Vries, W., 2021, “Impacts of nitrogen emissions on ecosystems and human health: A mini review,” Current Opinion in Environmental Science & Health, vol. 21, pp. 100249.
    Dincer, I., Rosen, M. A. (2012). Exergy: energy, environment and sustainable development: Newnes.
    Dong, L. L., Cheung, C. S., Leung, C. W., 2001, “Heat transfer characteristics of an impinging butane/air flame jet of low Reynolds number,” Experimental Heat Transfer, vol. 14(4), pp. 265-282.
    Du, D., He, E., Li, F., Huang, D., 2020, “Using the hierarchical Kriging model to optimize the structural dynamics of rocket engines,” Aerospace Science and Technology, vol. 107, pp. 106248.
    Ebrahimi-Moghadam, A., Moghadam, A. J., Farzaneh-Gord, M., Aliakbari, K., 2020, “Proposal and assessment of a novel combined heat and power system: Energy, exergy, environmental and economic analysis,” Energy Conversion and Management, vol. 204, pp. 112307.
    Energy Administration Ministry of Economic Affairs R.O.C., 2022, “Overview of power generation in 2022,” Retrieved from https://www.moeaea.gov.tw/ECW/populace/content/Content.aspx?menu_id=14437
    Energy Information Administration, 2022, “U.S. energy facts explained,” Retrieved from https://www.eia.gov/energyexplained/us-energy-facts/
    Forrester, A., Sobester, A., Keane, A. (2008). Engineering design via surrogate modelling: a practical guide: John Wiley & Sons.
    Fu, J., Tang, C., Jin, W., Thi, L. D., Huang, Z., Zhang, Y., 2013, “Study on laminar flame speed and flame structure of syngas with varied compositions using OH-PLIF and spectrograph,” International Journal of Hydrogen Energy, vol. 38(3), pp. 1636-1643.
    Gürsan, C., de Gooyert, V., 2021, “The systemic impact of a transition fuel: Does natural gas help or hinder the energy transition?,” Renewable and Sustainable Energy Reviews, vol. 138, pp. 110552.
    Gholami, F., Tomas, M., Gholami, Z., Vakili, M., 2020, “Technologies for the nitrogen oxides reduction from flue gas: A review,” Science of the Total Environment, vol. 714, pp. 136712.
    Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning: Addison-Wesley.
    Gu, L., Yang, R., 2006, “On reliability-based optimisation methods for automotive structures,” International Journal of Materials and Product Technology, vol. 25(1-3), pp. 3-26.
    Guiberti, T. F., Cutcher, H., Roberts, W. L., Masri, A. R., 2017, “Influence of pilot flame parameters on the stability of turbulent jet flames,” Energy & Fuels, vol. 31(3), pp. 2128-2137.
    Guo, H., Smallwood, G. J., Liu, F., Ju, Y., Gülder, Ö. L., 2005, “The effect of hydrogen addition on flammability limit and NOx emission in ultra-lean counterflow CH4/air premixed flames,” Proceedings of the combustion institute, vol. 30(1), pp. 303-311.
    Guo, S., Wang, J., Zhang, W., Lin, B., Wu, Y., Yu, S., Li, G., Hu, Z., Huang, Z., 2019, “Investigation on bluff-body and swirl stabilized flames near lean blowoff with PIV/PLIF measurements and LES modelling,” Applied Thermal Engineering, vol. 160, pp. 114021.
    Halter, F., Higelin, P., Dagaut, P., 2011, “Experimental and detailed kinetic modeling study of the effect of ozone on the combustion of methane,” Energy & Fuels, vol. 25(7), pp. 2909-2916.
    Han, X., Lavadera, M. L., Brackmann, C., Wang, Z., He, Y., Konnov, A. A., 2021, “Experimental and kinetic modeling study of NO formation in premixed CH4+ O2+ N2 flames,” Combustion and Flame, vol. 223, pp. 349-360.
    Hargrave, G. K., Fairweather, M., Kilham, J. K., 1987, “Forced convective heat transfer from premixed flames—Part 2: Impingement heat transfer,” International journal of heat and fluid flow, vol. 8(2), pp. 132-138.
    Hindasageri, V., Kuntikana, P., Vedula, R. P., Prabhu, S. V., 2015, “An experimental and numerical investigation of heat transfer distribution of perforated plate burner flames impinging on a flat plate,” International Journal of Thermal Sciences, vol. 94, pp. 156-169.
    Hindasageri, V., Vedula, R. P., Prabhu, S. V., 2014a, “Heat transfer distribution for impinging methane–air premixed flame jets,” Applied Thermal Engineering, vol. 73(1), pp. 461-473.
    Hindasageri, V., Vedula, R. P., Prabhu, S. V., 2014b, “A novel method of estimation of adiabatic wall temperature for impinging premixed flame jets,” International Journal of Heat and Mass Transfer, vol. 77, pp. 185-193.
    Honzawa, T., Kai, R., Okada, A., Valera-Medina, A., Bowen, P. J., Kurose, R., 2019, “Predictions of NO and CO emissions in ammonia/methane/air combustion by LES using a non-adiabatic flamelet generated manifold,” Energy, vol. 186, pp. 115771.
    Hu, S., Gao, J., Gong, C., Zhou, Y., Bai, d. X. S., Li, Z. S., Alden, M., 2018, “Assessment of uncertainties of laminar flame speed of premixed flames as determined using a Bunsen burner at varying pressures,” Applied Energy, vol. 227, pp. 149-158.
    Hua, J., Pan, J., Li, F., Fan, B., Li, Z., Ojo, A. O., 2023, “Heat transfer characteristics of premixed methane-air flame jet impinging on a hemispherical surface,” Fuel, vol. 343, pp. 127698.
    International Energy Agency, 2017, “Renewable Energy for Industry.” Retrieved from https://www.iea.org/reports/renewable-energy-for-industry
    International Energy Agency, 2023, “World Energy Outlook 2023.” Retrieved from https://www.iea.org/reports/world-energy-outlook-2023
    International Energy Agency, 2024, “CO2 Emissions in 2023.” Retrieved from https://www.iea.org/reports/co2-emissions-in-2023
    Jin, T., Dong, W., Qiu, B., Xu, C., Liu, Y., Chu, H., 2022, “Effect of Ammonia on Laminar Combustion Characteristics of Methane–Air Flames at Elevated Pressures,” ACS omega, vol. 7(18), pp. 15326-15337.
    Jones, D. R., Schonlau, M., Welch, W. J., 1998, “Efficient global optimization of expensive black-box functions,” Journal of Global Optimization, vol. 13, pp. 455-492.
    Kadam, A. R., Parida, R. K., Hindasageri, V., Kumar, G., 2019, “Heat transfer distribution of premixed methane-air laminar flame jets impinging on ribbed surfaces,” Applied Thermal Engineering, vol. 163, pp. 114352.
    Kang, L., Pan, W., Zhang, J., Wang, W., Tang, C., 2023, “A review on ammonia blends combustion for industrial applications,” Fuel, vol. 332, pp. 126150.
    Kim, G. T., Yoo, C. S., Chung, S. H., Park, J., 2020, “Effects of non-thermal plasma on the lean blowout limits and CO/NOx emissions in swirl-stabilized turbulent lean-premixed flames of methane/air,” Combustion and Flame, vol. 212, pp. 403-414.
    Kobayashi, H., Hayakawa, A., Somarathne, K. K. A., Okafor, E. C., 2019, “Science and technology of ammonia combustion,” Proceedings of the combustion institute, vol. 37(1), pp. 109-133.
    Kohansal, M., Kiani, M., Masoumi, S., Nourinejad, S., Ashjaee, M., Houshfar, E., 2023, “Experimental and numerical investigation of NH3/CH4 mixture combustion properties under elevated initial pressure and temperature,” Energy & Fuels, vol. 37(14), pp. 10681-10696.
    Kuntikana, P., Prabhu, S. V., 2016, “Air jet impingement technique for thermal characterisation of premixed methane–air impinging flame jets,” Applied Thermal Engineering, vol. 99, pp. 905-918.
    Kuo, K. K., 1986, “Principles of combustion,” vol., pp.
    Laguillo, S., Ochoa, J. S., Tizne, E., Pina, A., Ballester, J., Ortiz, A., 2021, “CO emissions and temperature analysis from an experimental and numerical study of partially premixed methane flames impinging onto a cooking pot,” Journal of Natural Gas Science and Engineering, vol. 88, pp. 103771.
    Lee, C. E., Oh, C. B., Kim, J. H., 2004, “Numerical and experimental investigations of the NOx emission characteristics of CH4-air coflow jet flames,” Fuel, vol. 83(17-18), pp. 2323-2334.
    Li, H. B., Zhen, H. S., Leung, C. W., Cheung, C. S., 2010, “Effects of plate temperature on heat transfer and emissions of impinging flames,” International Journal of Heat and Mass Transfer, vol. 53(19-20), pp. 4176-4184.
    Li, H. B., Zhen, H. S., Leung, C. W., Cheung, C. S., 2011, “Nozzle effect on heat transfer and CO emission of impinging premixed flames,” International Journal of Heat and Mass Transfer, vol. 54(1-3), pp. 625-635.
    Li, S., Yuan, S., Liu, S., Wen, J., Huang, Q., 2022, “Research on an Accuracy Optimization Algorithm of Kriging Model Based on a Multipoint Filling Criterion,” Mathematics, vol. 10(9), pp. 1548.
    Li, S., Zhang, S., Zhou, H., Ren, Z., 2019, “Analysis of air-staged combustion of NH3/CH4 mixture with low NOx emission at gas turbine conditions in model combustors,” Fuel, vol. 237, pp. 50-59.
    Li, Y. H., Kao, H. H., Wang, Y. R., Wan, J., Manatura, K., 2023, “Performance optimizing and entropy generation analysis of a platinum–stainless-steel segmented microreactor,” Chemical Engineering Journal, vol. 457, pp. 141151.
    Liang, F.-Y., Ryvak, M., Sayeed, S., Zhao, N., 2012, “The role of natural gas as a primary fuel in the near future, including comparisons of acquisition, transmission and waste handling costs of as with competitive alternatives,” Chemistry Central Journal, vol. 6(1), pp. 1-24.
    Lyle, K. H., Tseng, L. K., Gore, J. P., Laurendeau, N. M., 1999, “A study of pollutant emission characteristics of partially premixed turbulent jet flames,” Combustion and Flame, vol. 116(4), pp. 627-639.
    Mac Kinnon, M. A., Brouwer, J., Samuelsen, S., 2018, “The role of natural gas and its infrastructure in mitigating greenhouse gas emissions, improving regional air quality, and renewable resource integration,” Progress in Energy and Combustion science, vol. 64, pp. 62-92.
    McKay, M. D., Beckman, R. J., Conover, W. J., 1979, “Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code,” Technometrics, vol. 21(2), pp. 239-245.
    Meckesheimer, M., Barton, R. R., Simpson, T. W., Booker, A. J., 2001, 9–12 September, “Computationally inexpensive metamodel assessment strategies,” International design engineering technical conferences and computers and information in engineering conference, Pittsburgh, Pennsylvania, USA.
    Mikofski, M. A., Williams, T. C., Shaddix, C. R., Blevins, L. G., 2006, “Flame height measurement of laminar inverse diffusion flames,” Combustion and Flame, vol. 146(1-2), pp. 63-72.
    Mikulčić, H., Baleta, J., Wang, X., Wang, J., Qi, F., Wang, F., 2021, “Numerical simulation of ammonia/methane/air combustion using reduced chemical kinetics models,” International Journal of Hydrogen Energy, vol. 46(45), pp. 23548-23563.
    Misener, R., Biegler, L., 2023, “Formulating data-driven surrogate models for process optimization,” Computers & Chemical Engineering, vol. 179, pp. 108411.
    Montgomery, M. J., Kwon, H., Dreyer, J. A., Xuan, Y., McEnally, C. S., Pfefferle, L. D., 2021, “Effect of ammonia addition on suppressing soot formation in methane co-flow diffusion flames,” Proceedings of the combustion institute, vol. 38(2), pp. 2497-2505.
    Morad, M. R., Momeni, A., Fordoei, E. E., Ashjaee, M., 2016, “Experimental and numerical study on heat transfer characteristics for methane/air flame impinging on a flat surface,” International Journal of Thermal Sciences, vol. 110, pp. 229-240.
    Morlanés, N., Katikaneni, S. P., Paglieri, S. N., Harale, A., Solami, B., Sarathy, S. M., Gascon, J., 2021, “A technological roadmap to the ammonia energy economy: Current state and missing technologies,” Chemical Engineering Journal, vol. 408, pp. 127310.
    Nam, H. T., Jeon, Y., Lee, S., Jung, H., 2023, “Experimental study on combustion and thermal characteristics of impinging premixed flames for low heating value gas (LHVG) fuels,” Case Studies in Thermal Engineering, vol. 47, pp. 103032.
    Namura, N., Shimoyama, K., Obayashi, S., 2017, “Kriging surrogate model with coordinate transformation based on likelihood and gradient,” Journal of Global Optimization, vol. 68, pp. 827-849.
    Okafor, E. C., Naito, Y., Colson, S., Ichikawa, A., Kudo, T., Hayakawa, A., Kobayashi, H., 2018, “Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames,” Combustion and Flame, vol. 187, pp. 185-198.
    Okafor, E. C., Somarathne, K. K. A., Hayakawa, A., Kudo, T., Kurata, O., Iki, N., Kobayashi, H., 2019, “Towards the development of an efficient low-NOx ammonia combustor for a micro gas turbine,” Proceedings of the combustion institute, vol. 37(4), pp. 4597-4606.
    Okafor, E. C., Somarathne, K. K. A., Ratthanan, R., Hayakawa, A., Kudo, T., Kurata, O., Iki, N., Tsujimura, T., Furutani, H., Kobayashi, H., 2020, “Control of NOx and other emissions in micro gas turbine combustors fuelled with mixtures of methane and ammonia,” Combustion and Flame, vol. 211, pp. 406-416.
    Okuno, T., Nakamura, H., Tezuka, T., Hasegawa, S., Maruta, K., 2017, “Ultra-lean combustion characteristics of premixed methane flames in a micro flow reactor with a controlled temperature profile,” Proceedings of the combustion institute, vol. 36(3), pp. 4227-4233.
    Parida, R. K., Kadam, A. R., Vasudeva, M., Hindasageri, V., 2021, “Heat transfer characterisation of impinging flame jet over a wedge,” Applied Thermal Engineering, vol. 196, pp. 117277.
    Park, S., 2021, “Hydrogen addition effect on NO formation in methane/air lean-premixed flames at elevated pressure,” International Journal of Hydrogen Energy, vol. 46(50), pp. 25712-25725.
    Pignatelli, F., Sanned, D., Derafshzan, S., Szasz, R., Bai, X., Richter, M., Ehn, A., Lörstad, D., Petersson, P., Subash, A., 2024, “Impact of pilot flame and hydrogen enrichment on turbulent methane/hydrogen/air swirling premixed flames in a model gas turbine combustor,” Experimental Thermal and Fluid Science, vol. 152, pp. 111124.
    Ramkishanrao, K. A. (2019). Heat Transfer Distribution of Impinging Methane-Air Premixed Flame Jets. National Institute of Technology Karnataka, Surathkal,
    Raza, S., Ghasali, E., Raza, M., Chen, C., Li, B., Orooji, Y., Lin, H., Karaman, C., Maleh, H. K., Erk, N., 2023, “Advances in technology and utilization of natural resources for achieving carbon neutrality and a sustainable solution to neutral environment,” Environmental research, vol. 220, pp. 115135.
    Remie, M. J., Cremers, M. F. G., Schreel, K. R. A. M., De Goey, L. P. H., 2007, “Analysis of the heat transfer of an impinging laminar flame jet,” International Journal of Heat and Mass Transfer, vol. 50(13-14), pp. 2816-2827.
    Remie, M. J., Särner, G., Cremers, M. F. G., Omrane, A., Schreel, K. R. A. M., Aldén, L. E. M., De Goey, L. P. H., 2008, “Heat-transfer distribution for an impinging laminar flame jet to a flat plate,” International Journal of Heat and Mass Transfer, vol. 51(11-12), pp. 3144-3152.
    Rocha, R. C., Ramos, C. F., Costa, M., Bai, X.-S., 2019, “Combustion of NH3/CH4/air and NH3/H2/air mixtures in a porous burner: experiments and kinetic modeling,” Energy & Fuels, vol. 33(12), pp. 12767-12780.
    Rojas-Gonzalez, S., Van Nieuwenhuyse, I., 2020, “A survey on kriging-based infill algorithms for multiobjective simulation optimization,” Computers & Operations Research, vol. 116, pp. 104869.
    Sayyar, A., Davani, A., 2021, “Numerical optimization of flame stability in a swirl combustion chamber with helical tapes,” Thermal Science and Engineering Progress, vol. 22, pp. 100815.
    Seigo, K., Satoshi, H., Yoshito, U., Syuichi, M., Katsuo, A., 2005, “Characteristics of combustion of rich-lean flame burner under low load combustion,” Proceedings of the 20th International Colloquium on the Dynamics of Explosion and Reactive Systems, Montreal, QC, Canada.
    Shi, L., Yang, R.-J., Zhu, P., 2012, “A method for selecting surrogate models in crashworthiness optimization,” Structural and Multidisciplinary Optimization, vol. 46, pp. 159-170.
    Simpson, T. W., Mauery, T. M., Korte, J. J., Mistree, F., 2001, “Kriging models for global approximation in simulation-based multidisciplinary design optimization,” AIAA journal, vol. 39(12), pp. 2233-2241.
    Singh, A. S., Vijrumbana, Y., Reddy, V. M., 2024, “Experimental and computational (Chemical Kinetic+ CFD) analyses of Self-Recuperative annular tubular porous burner for NH3/CH4-air Non-Premixed combustion,” Chemical Engineering Journal, vol. 481, pp. 148439.
    Somarathne, K. D. K. A., Okafor, E. C., Hayakawa, A., Kudo, T., Kurata, O., Iki, N., Kobayashi, H., 2019, “Emission characteristics of turbulent non-premixed ammonia/air and methane/air swirl flames through a rich-lean combustor under various wall thermal boundary conditions at high pressure,” Combustion and Flame, vol. 210, pp. 247-261.
    Sun, J., Yang, Q., Zhao, N., Chen, M., Zheng, H., 2022, “Numerically study of CH4/NH3 combustion characteristics in an industrial gas turbine combustor based on a reduced mechanism,” Fuel, vol. 327, pp. 124897.
    Tang, G., Jin, P., Bao, Y., Chai, W. S., Zhou, L., 2021, “Experimental investigation of premixed combustion limits of hydrogen and methane additives in ammonia,” International Journal of Hydrogen Energy, vol. 46(39), pp. 20765-20776.
    ur Rehman, S., Langelaar, M., 2017, “Expected improvement based infill sampling for global robust optimization of constrained problems,” Optimization and Engineering, vol. 18, pp. 723-753.
    Viswamithra, V., Gurunadhan, M., Menon, S., 2023, “Expanding swirl combustor operability on methane-ammonia-air mixtures using a distributed fuel injection technique and inlet air preheating,” International Journal of Hydrogen Energy, vol. 48(3), pp. 1189-1201.
    Wang, G., Huang, L., Wang, L., Zhao, F., Li, Y., Wan, R., 2021, “A metamodeling with CFD method for hydrodynamic optimisations of deflectors on a multi-wing trawl door,” Ocean Engineering, vol. 232, pp. 109045. doi:10.1016/j.oceaneng.2021.109045
    Wang, J., Tchapmi, L. P., Ravikumar, A. P., McGuire, M., Bell, C. S., Zimmerle, D., Savarese, S., Brandt, A. R., 2020, “Machine vision for natural gas methane emissions detection using an infrared camera,” Applied Energy, vol. 257, pp. 113998.
    Wang, J. T., Wang, C. J., Zhao, J. P., 2017, “Frequency response function-based model updating using Kriging model,” Mechanical Systems and Signal Processing, vol. 87, pp. 218-228.
    Wang, Q., Chen, X., Jha, A. N., Rogers, H., 2014, “Natural gas from shale formation–the evolution, evidences and challenges of shale gas revolution in United States,” Renewable and Sustainable Energy Reviews, vol. 30, pp. 1-28.
    Watson, G. M., Munzar, J. D., Bergthorson, J. M., 2014, “NO formation in model syngas and biogas blends,” Fuel, vol. 124, pp. 113-124.
    Wei, Z., Zhen, H., Leung, C., Cheung, C., Huang, Z., 2020, “Effects of unburned gases velocity on the CO/NO2/NOx formations and overall emissions of laminar premixed biogas-hydrogen impinging flame,” Energy, vol. 196, pp. 117146.
    Wei, Z. L., Zhen, H. S., Leung, C. W., Cheung, C. S., Huang, Z. H., 2015, “Heat transfer characteristics and the optimized heating distance of laminar premixed biogas-hydrogen Bunsen flame impinging on a flat surface,” International Journal of Hydrogen Energy, vol. 40(45), pp. 15723-15731.
    Wei, Z. L., Zhen, H. S., Leung, C. W., Cheung, C. S., Huang, Z. H., 2017, “Experimental and numerical study on the emission characteristics of laminar premixed biogas-hydrogen impinging flame,” Fuel, vol. 195, pp. 1-11.
    Wen, Z., Pei, H., Liu, H., Yue, Z., 2016, “A sequential Kriging reliability analysis method with characteristics of adaptive sampling regions and parallelizability,” Reliability Engineering & System Safety, vol. 153, pp. 170-179.
    Williams, F. A., 2000, “Progress in knowledge of flamelet structure and extinction,” Progress in Energy and Combustion science, vol. 26(4-6), pp. 657-682.
    Williams, F. A., Cattolica, R. J., Seshadri, K., Sanchez, A. L., 2018, “The San Diego Mechanism,” Retrieved from https://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html
    Wood, S., Harris, A. T., 2008, “Porous burners for lean-burn applications,” Progress in Energy and Combustion science, vol. 34(5), pp. 667-684.
    Wu, C. Y., Chen, K. H., Yang, S. Y., 2014, “Experimental study of porous metal burners for domestic stove applications,” Energy Conversion and Management, vol. 77, pp. 380-388.
    Wu, C. Y., Wang, B. W., Wu, T. H., Chang, S. P., 2024, “Using Kriging surrogate model to analyze hydrogen generation with dimethyl ether in partial oxidation catalytic fluidized bed reactor,” International Journal of Hydrogen Energy, vol. 54, pp. 467-482.
    Xi, J., Yang, G., Guo, H., Gu, Z., 2022, “Numerical investigation on NO formation in laminar counterflow methane/n-heptane dual fuel flames,” International Journal of Hydrogen Energy, vol. 47(26), pp. 13143-13156.
    Xiao, H., Valera-Medina, A., Bowen, P. J., 2017, “Study on premixed combustion characteristics of co-firing ammonia/methane fuels,” Energy, vol. 140, pp. 125-135.
    Yan, H., Huang, Z., Zeng, P., Jiang, X., Wu, D., Zhou, P., Wu, X., Liu, L., 2024, “CFD-based burner parameter optimization of a sintering ignition furnace,” Applied Thermal Engineering, vol. 241, pp. 122430.
    Yu, S., Bai, X. S., Zhou, B., Wang, Z., Li, Z. S., Aldén, M., 2022, “Numerical studies of the pilot flame effect on a piloted jet flame,” Combustion Science and Technology, vol. 194(2), pp. 351-364.
    Zareei, J., Rohani, A., Mahmood, W. M. F. W., 2018, “Simulation of a hydrogen/natural gas engine and modelling of engine operating parameters,” International Journal of Hydrogen Energy, vol. 43(25), pp. 11639-11651.
    Zhang, J., Meerman, H., Benders, R., Faaij, A., 2020, “Comprehensive review of current natural gas liquefaction processes on technical and economic performance,” Applied Thermal Engineering, vol. 166, pp. 114736.
    Zhang, M., An, Z., Wang, L., Wei, X., Jianayihan, B., Wang, J., Huang, Z., Tan, H., 2021, “The regulation effect of methane and hydrogen on the emission characteristics of ammonia/air combustion in a model combustor,” International Journal of Hydrogen Energy, vol. 46(40), pp. 21013-21025.
    Zhang, M., An, Z., Wei, X., Wang, J., Huang, Z., Tan, H., 2021, “Emission analysis of the CH4/NH3/air co-firing fuels in a model combustor,” Fuel, vol. 291, pp. 120135.
    Zhang, T. H., Liu, F. G., You, X. Y., 2014, “Optimization of gas mixing system of premixed burner based on CFD analysis,” Energy Conversion and Management, vol. 85, pp. 131-139.
    Zhang, Y., Bray, K. N. C., 1999, “Characterization of impinging jet flames,” Combustion and Flame, vol. 116(4), pp. 671-674.
    Zhao, D., Ma, M., You, X. Y., 2022, “A Kriging-based adaptive parallel sampling approach with threshold value,” Structural and Multidisciplinary Optimization, vol. 65(8), pp. 225.
    Zhao, W., Qiu, P., Liu, L., Shen, W., Lyu, Y., 2019, “Combustion and NOx emission characteristics of dual-stage lean premixed flame,” Applied Thermal Engineering, vol. 160, pp. 113951.
    Zhao, Z., Wong, T. T., Leung, C. W., 2004, “Impinging premixed butane/air circular laminar flame jet––influence of impingement plate on heat transfer characteristics,” International Journal of Heat and Mass Transfer, vol. 47(23), pp. 5021-5031.
    Zhen, H. S., Chen, K. D., Chen, Z. B., Wei, Z. L., Fu, L. R., 2023, “Heat transfer analysis of impinging flames using field synergy principle,” Case Studies in Thermal Engineering, vol. 43, pp. 102807.
    Zhen, H. S., Wang, Z. W., Liu, X. Y., Wei, Z. L., Leung, C. W., Huang, Z. H., 2021, “A study on impingement heat transfer characteristics of partially premixed flames on double-concentric-pipe burner,” Fuel, vol. 284, pp. 119018.
    Zhen, H. S., Zhang, L., Wei, Z. L., Chen, Z. B., Huang, Z. H., 2019, “A numerical study of the heat transfer of an impinging round-jet methane Bunsen flame,” Fuel, vol. 251, pp. 730-738.
    Zheng, W., Wang, C., Yang, Y., Zhang, Y., 2020, “Multi-objective combustion optimization based on data-driven hybrid strategy,” Energy, vol. 191, pp. 116478.
    Zhou, B., Brackmann, C., Li, Q., Wang, Z., Petersson, P., Li, Z., Aldén, M., Bai, X.-s., 2015, “Distributed reactions in highly turbulent premixed methane/air flames: Part I. Flame structure characterization,” Combustion and Flame, vol. 162(7), pp. 2937-2953.

    無法下載圖示 校內:2029-08-20公開
    校外:2029-08-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE