簡易檢索 / 詳目顯示

研究生: 曹譽霖
Tsao, Yu-Lin
論文名稱: PDK1參與ARNT誘導MDR1表現所扮演的角色
The role of PDK1 in regulating ARNT-induced MDR1 expression
指導教授: 陳炳焜
Chen, Ben-Kuen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物資訊與訊息傳遞研究所
Insitute of Bioinformatics and Biosignal Transduction
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 38
中文關鍵詞: ARNTPDK1Warburg effectMDR1抗藥性
外文關鍵詞: ARNT, PDK1, Warburg effect, MDR1, drug resistanc
相關次數: 點閱:189下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Aryl hydrocarbon receptor nuclear translocator ( ARNT )為轉錄因子,也稱作Hypoxia-inducible factor 1-β ( HIF1-β )。在缺氧下會與HIF1-α一起調控許多缺氧基因,包括了代謝與抗藥性等。實驗室先前的研究證明ARNT會調控Multidrug resistance protein 1 ( MDR1 )這個抗藥性蛋白的表現來影響癌細胞對抗癌藥物Cisplatin的抗藥性。目前,已有許多文獻表明了癌細胞的抗藥性與細胞代謝異常有關。Warburg effect為癌細胞相較於正常細胞的代謝途徑偏好從葡萄糖轉換為乳酸產生以取得能量,而不是一般由丙酮酸轉換成acetyl-CoA進入粒線體氧化磷酸化的方式。而PDK1即為Pyruvate dehydrogenase ( PDH ) 的調控者。因此,本篇探討PDK1是否受到ARNT的調控以及是否參與在ARNT所調控MDR1的表現的機制與抗藥性。從實驗結果可知,在缺乏ARNT的細胞中,PDK1的蛋白質以及RNA表現下降。另外,也證實了ARNT調控PDK1的啟動子而促進基因的轉錄活性。而在PDK1缺失的細胞也證實了MDR1的蛋白質表現下降。另外也證實了PDK1影響MDR1啟動子的表現。並在PDK1缺失的細胞中發現化療藥物誘發的細胞死亡率較高。因此,本篇證實了PDK1參與ARNT所調控MDR1的抗藥性功能。且PDK1還調控代謝上的轉換,我們的研究證實了PDK1在癌症治療上的重要性。

    Aryl hydrocarbon receptor nuclear translocator ( ARNT ) is a transcription factor, also known as Hypoxia-inducible factor 1-β ( HIF1-β ). The complex of ARNT/HIF1-α regulates lots of hypoxic genes, including metabolism and drug resistance. In our previous studies we found that ARNT reduced the effect of anti-cancer drugs on tumor cell death by the regulation of MDR1 expression. The PDK1 is a Ser/Thr kinase that inactivates mitochondrial pyruvate dehydrogenase (PDH) by phosphorylation. As PDH is a gatekeeper enzyme that converts pyruvate to acetyl-CoA, PDK1 is known as a key regulator of the Warburg effect. The aim of this study is to investigate whether PDK1 is involved in ARNT-indced MDR1expression and drug resistance. Our data showed that PDK1 promoter activity, protein and mRNA expression was decreased in stable ARNT knockdown cells. In addition, MDR1 promoter activity, protein and mRNA expression were decreased in stable PDK1 knockdown cells. Furthermore, anti-cancer drug-induced cell death was increased in PDK1-silenced cancer cells. Thus, these data suggested that PDK1 may be an effective therapeutic target for cancer therapy.

    中文摘要 I 致謝 V 目錄 VII 圖目錄 IX 表目錄 X 第一章 緒論 1 第一節 芳香烴受體核轉位蛋白 Aryl hydrocarbon receptor nuclear translocator (ARNT) 1 (一) ARNT在生理上的功能 1 (二) ARNT在癌症中所扮演的角色 2 第二節 丙酮酸去氫酶激酶1 Pyruvate dehydrogenase kinase 1 (PDK1) 3 (一)癌細胞異常的代謝現象 3 (二) PDK1在癌細胞中所扮演的角色 4 第三節 多重抗藥性蛋白質 1 Multidrug resistance protein 1 (MDR1) 5 (一) 代謝與抗藥性的關係 5 第四節研究動機 6 第二章 材料與方法 7 細胞培養 ( Cell culture ) 7 細胞液萃取 ( Total cell lysate ) 8 西方墨點法 ( Western blot ) 8 點突變實驗 ( Site-directed Mutagenesis ) 8 報導基因轉染實驗 ( Transfection and Reporter assay ) 9 暫時性轉殖感染 ( Transient transfection ) 10 挑選穩定致弱基因表現細胞株 ( Stable knockdown clone selection ) 10 RNA萃取 11 反轉錄聚合酶連鎖反應 ( Reverse-transcription reaction ) 11 即時定量聚合酶連鎖反應 ( Quantitative Real-time PCR ) 11 第三章 實驗結果 13 第一節 探討ARNT與PDK1之間的關係 13 (一) ARNT調控PDK1蛋白質的表現 13 (二) ARNT調控PDK1 mRNA的表現 13 (三) ARNT調控PDK1啟動子的表現 14 (四) PDK1啟動子上的Sp1區域對於ARNT的調控是重要的 14 第二節 探討PDK1與MDR1之間的關係 14 (一) PDK1調控MDR1蛋白質的表現 15 (二) PDK1調控MDR1啟動子的表現 15 (三) MDR1啟動子上的Sp1區域對於PDK1的調控是重要的 15 第三節 探討PDK1調控MDR1所影響之功能 16 (一) Knockdown PDK1影響MDR1所參與癌細胞抗藥性 16 第四章 討論 17 第一節 代謝基因PDK1與癌症治療 18 (一) PDK1參與癌細胞的抗藥性 18 (二) PDK1與ROS所誘導的細胞死亡 19 第二節 總結 20 參考文獻 21

    Altenberg, B., and Greulich, K.O. (2004). Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics 84, 1014-1020.
    Archer, S.L., Gomberg-Maitland, M., Maitland, M.L., Rich, S., Garcia, J.G., and Weir, E.K. (2008). Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. American journal of physiology. Heart and circulatory physiology 294, H570-578.
    Armstrong, J.S. (2006). Mitochondria: a target for cancer therapy. British journal of pharmacology 147, 239-248.
    Carmeliet, P., and Jain, R.K. (2000). Angiogenesis in cancer and other diseases. Nature 407, 249-257.
    Chan, Y.Y., Kalpana, S., Chang, W.C., Chang, W.C., and Chen, B.K. (2013). Expression of aryl hydrocarbon receptor nuclear translocator enhances cisplatin resistance by upregulating MDR1 expression in cancer cells. Molecular pharmacology 84, 591-602.
    Chang, K.Y., Shen, M.R., Lee, M.Y., Wang, W.L., Su, W.C., Chang, W.C., and Chen, B.K. (2009). Epidermal growth factor-activated aryl hydrocarbon receptor nuclear translocator/HIF-1{beta} signal pathway up-regulates cyclooxygenase-2 gene expression associated with squamous cell carcinoma. The Journal of biological chemistry 284, 9908-9916.
    Chen, Z., Lu, W., Garcia-Prieto, C., and Huang, P. (2007). The Warburg effect and its cancer therapeutic implications. Journal of bioenergetics and biomembranes 39, 267-274.
    Czech, M.P. (2006). ARNT misbehavin' in diabetic beta cells. Nature medicine 12, 39-40.
    Dixon, S.J., and Stockwell, B.R. (2014). The role of iron and reactive oxygen species in cell death. Nature chemical biology 10, 9-17.
    Fantin, V.R., and Leder, P. (2006). Mitochondriotoxic compounds for cancer therapy. Oncogene 25, 4787-4797.
    Fleury, C., Mignotte, B., and Vayssiere, J.L. (2002). Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84, 131-141.
    Gatenby, R.A., and Gillies, R.J. (2004). Why do cancers have high aerobic glycolysis? Nature reviews. Cancer 4, 891-899.
    Giaccia, A., Siim, B.G., and Johnson, R.S. (2003). HIF-1 as a target for drug development. Nature reviews. Drug discovery 2, 803-811.
    Gunton, J.E., Kulkarni, R.N., Yim, S., Okada, T., Hawthorne, W.J., Tseng, Y.H., Roberson, R.S., Ricordi, C., O'Connell, P.J., Gonzalez, F.J., et al. (2005). Loss of ARNT/HIF1beta mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell 122, 337-349.
    Halliwell, B., and Chirico, S. (1993). Lipid peroxidation: its mechanism, measurement, and significance. The American journal of clinical nutrition 57, 715S-724S; discussion 724S-725S.
    Housman, G., Byler, S., Heerboth, S., Lapinska, K., Longacre, M., Snyder, N., and Sarkar, S. (2014). Drug resistance in cancer: an overview. Cancers 6, 1769-1792.
    Kato, M., Li, J., Chuang, J.L., and Chuang, D.T. (2007). Distinct structural mechanisms for inhibition of pyruvate dehydrogenase kinase isoforms by AZD7545, dichloroacetate, and radicicol. Structure (London, England : 1993) 15, 992-1004.
    Kewley, R.J., Whitelaw, M.L., and Chapman-Smith, A. (2004). The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. The international journal of biochemistry & cell biology 36, 189-204.
    Kim, J.W., and Dang, C.V. (2006). Cancer's molecular sweet tooth and the Warburg effect. Cancer research 66, 8927-8930.
    Kim, J.W., Tchernyshyov, I., Semenza, G.L., and Dang, C.V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell metabolism 3, 177-185.
    Kobayashi, A., Numayama-Tsuruta, K., Sogawa, K., and Fujii-Kuriyama, Y. (1997). CBP/p300 functions as a possible transcriptional coactivator of Ah receptor nuclear translocator (Arnt). Journal of biochemistry 122, 703-710.
    Kozak, K.R., Abbott, B., and Hankinson, O. (1997). ARNT-deficient mice and placental differentiation. Developmental biology 191, 297-305.
    Lu, C.W., Lin, S.C., Chen, K.F., Lai, Y.Y., and Tsai, S.J. (2008). Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. The Journal of biological chemistry 283, 28106-28114.
    Maltepe, E., Schmidt, J.V., Baunoch, D., Bradfield, C.A., and Simon, M.C. (1997). Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386, 403-407.
    Michelakis, E.D., Webster, L., and Mackey, J.R. (2008). Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. British journal of cancer 99, 989-994.
    Mujcic, H., Hill, R.P., Koritzinsky, M., and Wouters, B.G. (2014). Hypoxia signaling and the metastatic phenotype. Current molecular medicine 14, 565-579.
    Orrenius, S. (2007). Reactive oxygen species in mitochondria-mediated cell death. Drug metabolism reviews 39, 443-455.
    Papandreou, I., Cairns, R.A., Fontana, L., Lim, A.L., and Denko, N.C. (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell metabolism 3, 187-197.
    Pelicano, H., Martin, D.S., Xu, R.H., and Huang, P. (2006). Glycolysis inhibition for anticancer treatment. Oncogene 25, 4633-4646.
    Rahman, M., and Hasan, M.R. (2015). Cancer Metabolism and Drug Resistance. Metabolites 5, 571-600.
    Ryan, H.E., Lo, J., and Johnson, R.S. (1998). HIF-1 alpha is required for solid tumor formation and embryonic vascularization. The EMBO journal 17, 3005-3015.
    Sawayama, H., Ishimoto, T., Sugihara, H., Miyanari, N., Miyamoto, Y., Baba, Y., Yoshida, N., and Baba, H. (2014). Clinical impact of the Warburg effect in gastrointestinal cancer (review). International journal of oncology 45, 1345-1354.
    Schofield, C.J., and Ratcliffe, P.J. (2004). Oxygen sensing by HIF hydroxylases. Nature reviews. Molecular cell biology 5, 343-354.
    Shi, H. (2009). Hypoxia inducible factor 1 as a therapeutic target in ischemic stroke. Current medicinal chemistry 16, 4593-4600.
    Silva, R., Vilas-Boas, V., Carmo, H., Dinis-Oliveira, R.J., Carvalho, F., de Lourdes Bastos, M., and Remiao, F. (2015). Modulation of P-glycoprotein efflux pump: induction and activation as a therapeutic strategy. Pharmacology & therapeutics 149, 1-123.
    Stacpoole, P.W., Nagaraja, N.V., and Hutson, A.D. (2003). Efficacy of dichloroacetate as a lactate-lowering drug. Journal of clinical pharmacology 43, 683-691.
    Trachootham, D., Alexandre, J., and Huang, P. (2009). Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nature reviews. Drug discovery 8, 579-591.
    Wei, Y.H., Lu, C.Y., Lee, H.C., Pang, C.Y., and Ma, Y.S. (1998). Oxidative damage and mutation to mitochondrial DNA and age-dependent decline of mitochondrial respiratory function. Annals of the New York Academy of Sciences 854, 155-170.
    Xuan, Y., Hur, H., Ham, I.H., Yun, J., Lee, J.Y., Shim, W., Kim, Y.B., Lee, G., Han, S.U., and Cho, Y.K. (2014). Dichloroacetate attenuates hypoxia-induced resistance to 5-fluorouracil in gastric cancer through the regulation of glucose metabolism. Experimental cell research 321, 219-230.
    Zhao, Y., Butler, E.B., and Tan, M. (2013). Targeting cellular metabolism to improve cancer therapeutics. Cell death & disease 4, e532.
    Ziello, J.E., Jovin, I.S., and Huang, Y. (2007). Hypoxia-Inducible Factor (HIF)-1 Regulatory Pathway and its Potential for Therapeutic Intervention in Malignancy and Ischemia. The Yale Journal of Biology and Medicine 80, 51-60.
    Zwaans, B.M., and Lombard, D.B. (2014). Interplay between sirtuins, MYC and hypoxia-inducible factor in cancer-associated metabolic reprogramming. Disease models & mechanisms 7, 1023-1032.

    下載圖示
    2018-12-02公開
    QR CODE