| 研究生: |
張壹婷 Chang, Yi-Ting |
|---|---|
| 論文名稱: |
跨年齡層的感官優勢變化:以Colavita效應研究為例 Changes in Sensory Dominance across the Life Span: Evidence from the Colavita Effect |
| 指導教授: |
黃碧群
Huang, Pi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
社會科學院 - 心理學系 Department of Psychology |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | Colavita效應 、寇拉維塔效應 、感官優勢 、多感官整合 、橫斷面研究 |
| 外文關鍵詞: | Colavita Effect, Sensory Dominance, Multisensory Integration, Cross-sectional study |
| 相關次數: | 點閱:103 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在生活中,我們常利用各種感官覺知外界環境,感官間相輔相成能迅速且準確的讓我們體驗到各種感官間整合後的訊息,然而,有時各感官間會產生競爭,造成其中一種感官模態占優勢,寇拉維塔(Colavita)效應就是一個很好的例子。Colavita 效應是指在快速辨別任務中,視聽刺激同時出現時,與視覺刺激相比,成人通常未能對聽覺刺激做出反應,但是在視覺刺激跟聽覺刺激單獨呈現時,卻很少出現失誤情形,此結果顯示成人的視覺優勢現象。然而,在生命初期,與視覺刺激相比,兒童受試者 (4至 12 歲) 更能對聽覺刺激自動做出反應,由此可知,發展的過程中存在發生感官優勢由聽覺轉變為視覺的時機點。本橫斷面研究,使用 Colavita 實驗派典探索和量化整個生命週期的感官優勢,觀察發生感官優勢轉變的歷程。
本研究對反應時間的分析顯示,4 至 12 歲兒童對聽覺刺激的反應比對視覺刺激的反應更快,於雙模態試驗中,僅對聽覺刺激做出的反應明顯更多 (反向 Colavita);18至 30 歲的年輕受試者則與先前實驗結果相同 (出現 Colavita 效應);大於 40 歲以後的受試者,則缺乏證據支持任何特定的感官優勢。此外,更進一步分析雙模態嘗試次下的視覺和聽覺反應耦合現象,發現 18 至 30 歲的年輕受試者的相關係數最大 (r = 0.81,R
2 = 0.65, p < 0.001),表示此年齡層的受試者似乎對雙模態試驗的刺激更易作出單一的
反應。
本研究使用迴歸分析檢驗年齡及性別與 Colavita 效應間的關係,結果顯示僅於4 至 30 歲之年齡層,年齡可作為感官優勢預測因子,雖然女性受試者的決定係數更大(R2 = 0.24 v.s. 0.17),但未達統計上顯著水準,故性別無法作為預測因子。感官優勢於青春期約 12 至 18 歲間,由聽覺轉變為視覺優勢,成人的視覺優勢隨著年齡的增長而趨於減弱,並且似乎在生命的後期達到平衡。
本研究的結果顯示不同年齡層存在不同特徵的感官優勢,不同受試者的 Colavita
效應指數亦存在個體差異,因此或許未來可利用該指數識別出不同駕駛員、飛行員及
空中交通管制員的個別差異,並將其應用在他們工作環境使用的信號系統中。
關鍵字: Colavita 效應, 寇拉維塔效應, 感官優勢, 多感官整合, 橫斷面研究
Perceiving our environment is a multisensory experience per se. The complementarity in the human senses can quickly and accurately allow us to integrate information from different modalities. In certain situations, the senses compete and manifest a latent dominance, for example, the Colavita effect stands as an instance of visual dominance.
The Colavita effect can be evidenced during a speeded discrimination task involving the presentation of audio-visual (i.e., bimodal) stimuli, in which adult participants frequently fail to respond to the auditory component of a stimulus significantly more often than to the visual component. Interestingly, adults responded correctly and promptly to unimodal visual and auditory trials. Previous studies have shown that auditory stimuli may engage attention more automatically than visual stimuli in the early stages of life, then it is reasonable to infer there is a point in development in which a shift from auditory to visual dominance occurs. In the present cross-sectional study, the speeded discrimination paradigm initially created by Colavita was used to explore and quantify sensory dominance across the life span, aiming to evidence the point in development in which the shift in sensory dominance occurs.
The analysis of the response time showed that 4-12-years old children responded faster to the auditory component than to the visual component of the trials and made significantly more auditory-only mistaken responses to bimodal trials (the reversed Colavita effect); the analysis of the data obtained from 18-30 years old young adults confirmed previous observations about the Colavita effect. For the middle-aged adult group and older adult group, there was a lack of evidence supporting any particular sensory dominance. Furthermore, the analysis of the coupling of visual and auditory responses to bimodal trials yielded the largest correlation coefficient for the group of 18-30 years old young adults (r = 0.81, R2 = 0.65, p < 0.001), flagging the stage in life in which participants can produce a seemingly unitary response toward bimodal trials.
A set of linear regressions were computed to examine if age and gender significantly predicted a value characterizing sensory dominance. The result showed that age alone was a good predictor of sensory dominance among the participants between 4 and 30 years old and although females'coefficient of determination was relatively larger than that of their male counterparts (R
2 = 0.24 v.s. 0.17). There was not a significant main effect for gender nor for the
interaction between age and gender. As for the participants older than 40 years old, the linear model provides scant evidence supporting any particular sensory dominance in late adulthood as inferred by a rather flat linear trend.
The results from the present study indicate the existence of a characteristic sensory dominance for different age groups, but we also evidenced differences at the individual level as identified by our participants' Colavita Effect Index, which might be used to identify variations in how drivers, pilots, and air traffic controllers make use of their signal systems in their work environment in the future.
Keyword: Colavita Effect, Sensory Dominance, Multisensory Integration, Cross-sectional study
Alvarado, S., Kanter-Braem, B., Manz, K., Masciopinto, P., McKenna, E., Nelson, D., & Korek, K. (2011). Sensation and Perception: a unit lesson plan for high school psychology teachers. National Standards for High School Psychology Curricula, 1-46.
Barnhart, W. R., Rivera, S., & Robinson, C. W. (2018). Different patterns of modality dominance across development. Acta psychologica, 182, 154-165.
Bertelson, P., & De Gelder, B. (2004). The psychology of multimodal perception. Crossmodal space and crossmodal attention, 141-177.
Braddick, O., & Atkinson, J. (2011). Development of human visual function. Vision research, 51(13), 1588-1609.
Burr, D., & Gori, M. (2012). Multisensory integration develops late in humans.
Calvert, G., Spence, C., & Stein, B. E. (2004). The handbook of multisensory processes. MIT press.
Chen, Y. C., & Huang, P. C. (2021). Stimulus temporal uncertainty balances intersensory dominance. Psychonomic Bulletin & Review, 28(6), 1874-1884.
Chen, Y.C., & Spence, C. (2011). The crossmodal facilitation of visual object representations by sound: evidence from the backward masking paradigm. Journal of Experimental Psychology: Human Perception and Performance, 37(6), 1784.
Chung, W.-L., & Bidelman, G. M. (2021). Mandarin-speaking preschoolers’ pitch discrimination, prosodic and phonological awareness, and their relation to receptive vocabulary and reading abilities. Reading and writing, 34(2), 337-353.
Colavita, F. B. (1974). Human sensory dominance. Perception & Psychophysics, 16(2), 409-412.
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual review of neuroscience, 18(1), 193-222.
Driver, J., & Vuilleumier, P. (2001). Perceptual awareness and its loss in unilateral neglect and extinction. Cognition, 79(1-2), 39-88.
Ernst, M. O. (2008). Multisensory integration: a late bloomer. Current Biology, 18(12), R519-R521.
Gori, M., Del Viva, M., Sandini, G., & Burr, D. C. (2008). Young children do not integrate visual and haptic form information. Current Biology, 18(9), 694-698.
Hirst, R. J., Cragg, L., & Allen, H. A. (2018). Vision dominates audition in adults but not children: A meta-analysis of the Colavita effect. Neuroscience & Biobehavioral Reviews, 94, 286-301.
Jackson, C. (1953). Visual factors in auditory localization. Quarterly Journal of Experimental Psychology, 5(2), 52-65.
Jusczyk, P. W., Houston, D., & Goodman, M. (1998). Speech perception during the first year. Perceptual development: Visual, auditory, and speech perception in infancy, 357-388.
Koppen, C., Levitan, C. A., & Spence, C. (2009). A signal detection study of the Colavita visual dominance effect. Experimental brain research, 196(3), 353-360.
Koppen, C., & Spence, C. (2006). Prior entry and the Colavita effect.
Koppen, C., & Spence, C. (2007). Seeing the light: exploring the Colavita visual dominance effect. Experimental brain research, 180(4), 737-754.
Lewkowicz, D. J. (1988a). Sensory dominance in infants: I. Six-month-old infants' response to auditory-visual compounds. Developmental Psychology, 24(2), 155.
Lewkowicz, D. J. (1988b). Sensory dominance in infants: II. Ten-month-old infants' response to auditory-visual compounds. Developmental Psychology, 24(2), 172.
McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voices. Nature, 264(5588), 746-748. https://www.nature.com/articles/264746a0.pdf
Morein-Zamir, S., Soto-Faraco, S., & Kingstone, A. (2003). Auditory capture of vision: examining temporal ventriloquism. Cognitive Brain Research, 17(1), 154-163.
Mozolic, J. L., Hugenschmidt, C. E., Peiffer, A. M., & Laurienti, P. J. (2012). Multisensory integration and aging.
Murray, M. M., & Wallace, M. T. (2011). The neural bases of multisensory processes. CRC Press.
Murray, M. M., Eardley, A. F., Edginton, T., Oyekan, R., Smyth, E., & Matusz, P. J. (2018). Sensory dominance and multisensory integration as screening tools in aging. Scientific reports, 8(1), 1-11.
Nava, E., & Pavani, F. (2013). Changes in sensory dominance during childhood: Converging evidence from the Colavita effect and the sound‐induced flash illusion. Child Development, 84(2), 604-616.
O’Connor, N., & Hermelin, B. (1972). Seeing and hearing and space and space and time. Perception & Psychophysics, 11(1), 46-48.
Pashler, H. (1994). Dual-task interference in simple tasks: data and theory. Psychological bulletin, 116(2), 220.
Posner, M. I., Nissen, M. J., & Klein, R. M. (1976). Visual dominance: an information-processing account of its origins and significance. Psychological Review, 83(2).
R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Redel, P., Bublak, P., Sorg, C., Kurz, A., Förstl, H., Müller, H., Schneider, W. X., Perneczky, R., & Finke, K. (2012). Deficits of spatial and task-related attentional selection in mild cognitive impairment and Alzheimer's disease. Neurobiology of aging, 33(1), 195. e127-195. e142.
Robinson, C. W., & Sloutsky, V. M. (2010). Development of cross‐modal processing. Wiley Interdisciplinary Reviews: Cognitive Science, 1(1), 135-141.
Sekuler, R. (1997). Sound alters visual motion perception. Nature, 385, 308-308.
Sereno, M. I., Dale, A., Reppas, J., Kwong, K., Belliveau, J., Brady, T., Rosen, B., & Tootell, R. (1995). Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science, 268(5212), 889-893.
Setti, A., Burke, K. E., Kenny, R., & Newell, F. N. (2013). Susceptibility to a multisensory speech illusion in older persons is driven by perceptual processes. Frontiers in psychology, 4, 575.
Shams, L., Kamitani, Y., & Shimojo, S. (2000). What you see is what you hear. Nature, 408(6814), 788-788.
Sinnett, S., Spence, C., & Soto-Faraco, S. (2007). Visual dominance and attention: The Colavita effect revisited. Perception & Psychophysics, 69(5), 673-686.
Spence, C. (2007). Audiovisual multisensory integration. Acoustical science and technology, 28(2), 61-70.
Spence, C. (2009). Explaining the Colavita visual dominance effect. Progress in brain research, 176, 245-258.
Spence, C., Parise, C., & Chen, Y.-C. (2012). The Colavita visual dominance effect. The neural bases of multisensory processes.
Stein, B. E., & Stanford, T. R. (2008). Multisensory integration: current issues from the perspective of the single neuron. Nature reviews neuroscience, 9(4), 255-266.
Stevenson, R. A., Baum, S. H., Krueger, J., Newhouse, P. A., & Wallace, M. T. (2018). Links between temporal acuity and multisensory integration across life span. Journal of experimental psychology: human perception and performance, 44(1), 106.
Turatto, M., Benso, F., Galfano, G., & Umilta, C. (2002). Nonspatial attentional shifts between audition and vision. Journal of Experimental Psychology: Human Perception and Performance, 28(3), 628.
Vroomen, J., & Gelder, B. d. (2000). Sound enhances visual perception: cross-modal effects of auditory organization on vision. Journal of Experimental Psychology: Human Perception and Performance, 26(5), 1583.
Welch, R. B., DutionHurt, L. D., & Warren, D. H. (1986). Contributions of audition and vision to temporal rate perception. Perception & psychophysics, 39(4), 294-300.
The Math Works, Inc. (2020). MATLAB (Version 2020a) Natick, Massachusetts: The Math-Works Inc. https://www.mathworks.com/
校內:2028-01-04公開