簡易檢索 / 詳目顯示

研究生: 李秉哲
Lee, Ping-Che
論文名稱: 利用退火將濺鍍氧化鋅薄膜孔洞化以提升奈米壓電發電機輸出電壓之研究
Development of porous ZnO thin films by RF sputtering followed by annealing for enhancing output voltage of piezoelectric nanogenerators
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 94
中文關鍵詞: 氧化鋅壓電係數多孔薄膜壓電奈米發電機
外文關鍵詞: ZnO piezoelectric coefficient, porous thin film, piezoelectric nanogenerator
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著各種低耗電的便攜式逐漸普及在日常生活中,一個穩定且可以持續供電的能源便成一個重要的課題。奈米發電機是一個前景被看好可以解決微型電子裝置能源問題的電子元件,可以直接從環境中捕捉機械能並且將其轉換為可以運用的電能。近年來,奈米發電機已經有許多研究,元件製作的物理原理也逐漸被揭開,目前正朝著擴大應用的範圍發展。氧化鋅是一個Ⅱ-Ⅵ族的n型半導體材料,因為其同時具有壓電的特性,故其在壓電電子學上佔有一席之地。除此之外,氧化鋅具備優越的光學特性,因此又有壓電光子學方面的運用。
    氧化鋅的壓電係數約為12.4pm/V,文獻中有許多方法能提升氧化鋅的壓電係數,像是研究新材料。以ZnSnO3為例,和氧化鋅相比可以提升12倍。或者是化學摻雜,化學摻雜又可以分成物理性質和化學性質,物理性質方面,像是鎂金屬摻雜;而化學性質方面,像是鋰金屬摻雜,在氧化鋅奈米線鍍上金奈米顆粒也可以提升壓電奈米發電機的輸出或利用氧化鋅奈米線的結構異向性也是有用的方法。
    然而,這些方法有很多限制。本實驗根據之前本團隊以孔洞氧化鋅奈米線的研究成果,將其發展到奈米線之上。利用退火將射頻磁控濺鍍薄膜孔洞化,並運用不同的退火溫度製造不同大小和密度的孔洞氧化鋅薄膜,並以XRD觀察其結晶性和TEM觀察證明孔洞氧化鋅的產生乃是因為Zn原子和O原子向矽基板擴散的結果。並且藉由量測壓電係數(d33)了解在850℃下孔洞化的氧化鋅薄膜的確可以提升氧化鋅的壓電係數2.75倍,除了結晶性造成的提升外,孔洞附近的壓縮應力也是造成孔洞氧化鋅奈米發電提升的主因之一,證實孔洞可以有效改善壓電性質。
    除此之外,為了擴充材料的應用性,我們將我們的材料製備成奈米發電機,觀察其開路電壓,和850℃下退火的試片和原始的氧化鋅相比,多了3倍的輸出,除了前述提到的壓電係數提升,薄膜機械性質的改善也是使輸出再提升的更高的一個重要因素。

    Although piezoelectric semiconductors such as ZnO are considered as the promising candidates for piezotronics and piezoelectric nanogenerators (PENG), their piezoelectric coefficients are typically low. One of the strategies to enhancing piezoelectric properties proposed earlier by our group is to render nanorods porous. This idea is extended in this work, where porous ZnO thin films are first attempted by annealing RF-magnetron-sputtered ZnO films on Si substrate via kirkendall effect. Scanning electron microscopy images confirm the formation of aligned and faceted pores toward the bottom of the ZnO thin film. Through transmission electron microscopy (TEM) analysis, the pore formation mechanism is proposed to result from the out-diffusion of Zn and O atoms from ZnO to react with Si, causing the emergence of zinc silicate and silicon dioxide interfacial layers. High-resolution TEM images clearly reveal the lattices along the C axis nearby the pores experience compressive strain reducing from 0.5201nm to 0.4975nm, achieving the objectives of creating pores. Benefitted from the pores, the piezoelectric coefficient (d33) of the porous ZnO thin films determined by piezoelectric force microscopy can reach 2.64pm/V, which is 1.8 times higher than that of pristine ZnO thin films. Accordingly, compared to pristine ZnO, the PENG based on the porous ZnO thin film presents higher open-circuit voltage by up to 7.5 times. The enhancement is attributed to pore-induced higher d33, improvement of crystallinity and accompanying lower elastic modulus. Optimally, the introducing of pores has been confirmed to be beneficial to PENG of single-phase piezoelectric semiconductor thin films analogous to nanorods.

    摘要 I Extended abstract III 致謝 XIX 總目錄 XX 圖目錄 XXIII 表目錄 XXX 1-1. 前言 1 1-2. 研究動機與目的 3 第二章 文獻回顧 5 2-1. 濺鍍 5 2-1-1.電漿介紹 5 2-1-2.濺鍍原理 9 2-1-3.薄膜的沈積 12 2-2. 氧化鋅特性 16 2-2-1.晶體結構 16 2-2-2.物理性質 18 2-3. 壓電特性 19 2-3-1.壓電性質 19 2-3-2.壓電係數 22 2-4. 壓電電子效應 26 2-4-1.壓電電子效應 26 2-4-2.奈米發電機的工作原理 28 2-5. 壓電奈米發電機的歷史進展 32 2-5-1.壓電奈米發電機的材料 32 2-5-2.孔洞壓電奈米發電機 34 第三章 研究方法和實驗步驟 42 3-1.實驗流程 42 3-2. 實驗材料 43 3-3. 實驗設備 43 3-4. 實驗條件 44 3-4-1.基板的前處理 44 3-4-2.薄膜濺鍍流程 44 3-4-3.孔洞製備流程 44 3-4-4.奈米發電機元件製作 45 3-4-5.壓電電晶體元件製作 45 3-4-6.壓電原子力顯微鏡(PFM)試片製作 47 3-5. 薄膜性質分析 48 3-5-1.晶體結構分析 48 3-5-2.表面形貌分析 48 3-5-3.微結構分析 49 3-5-4.奈米壓痕試驗分析(Nano-Indentation) 50 3-5-5.薄膜奈米發電機量測 52 第四章 結果與討論 53 4-1. 表面形貌分析 53 4-2. 晶體結構分析 57 4-3. 機械性質分析 61 4-4. 材料微結構分析 63 4-5. 壓電係數量測 73 4-6. 壓電奈米發電機的輸出測試 76 4-7. 電壓電流曲線分析 81 第五章 結論 84 第六章 參考文獻 86

    [1] Y. Ding and Z. L. Wang, "Structures of planar defects in ZnO nanobelts and nanowires," Micron, vol. 40, no. 3, pp. 335-342, 2009.
    [2] W. Moore and E. Williams, "II. Diffusion of zinc and oxygen in zinc oxide," Discussions of the Faraday Society, vol. 28, pp. 86-93, 1959.
    [3] K. Barla, R. Herino, G. Bomchil, J. Pfister, and A. Freund, "Determination of lattice parameter and elastic properties of porous silicon by X-ray diffraction," Journal of crystal growth, vol. 68, no. 3, pp. 727-732, 1984.
    [4] W. Qi and M. Wang, "Size and shape dependent lattice parameters of metallic nanoparticles," Journal of Nanoparticle Research, vol. 7, no. 1, pp. 51-57, 2005.
    [5] Z. L. Wang, "On Maxwell's displacement current for energy and sensors: the origin of nanogenerators," Material Today, vol. 20, no. 2, pp. 74-82, 2017.
    [6] Y. C. Mao, P. Zhao, G. McConohy, H. Yang, Y. X. Tong, and X. D. Wang, "Sponge-Like Piezoelectric Polymer Films for Scalable and Integratable Nanogenerators and Self-Powered Electronic Systems," (in English), Advanced Energy Materials, vol. 4, no. 7, p. 7, May 2014.
    [7] K. Higashi, S. Okamoto, H. Nagano, and Y. Yamada, "Effects of mechanical parameters on hardness experienced by damped natural vibration stimulation," in 2015 IEEE International Conference on Systems, Man, and Cybernetics, 2015: IEEE, pp. 1539-1544, 2015:
    [8] 陳信宏, "氧化鋅鎂/氧化鋅異質結構薄膜之壓電性質研究," 碩士, 材料科學及工程學系, 國立成功大學, 台南市, 2019.
    [9] H. Y. Guo et al., "A nanogenerator for harvesting airflow energy and light energy,", Journal of Material Chemistry A, vol. 2, no. 7, pp. 2079-2087, 2014.
    [10] Q. Zheng, B. J. Shi, Z. Li, and Z. L. Wang, "Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems,", Advanced Science, vol. 4, no. 7, p. 23, Jul 2017.
    [11] S. Y. Chung et al., "All‐solution‐processed flexible thin film piezoelectric nanogenerator," Advanced Materials, vol. 24, no. 45, pp. 6022-6027, 2012.
    [12] K.-I. Park et al., "Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates," Nano Letters, vol. 10, no. 12, pp. 4939-4943, 2010.
    [13] J. Zhang et al., "Hierarchically porous ZnO architectures for gas sensor application," Crystal Growth and Design, vol. 9, no. 8, pp. 3532-3537, 2009.
    [14] R. Vasquez, R. Fathauer, T. George, A. Ksendzov, and T. Lin, "Electronic structure of light‐emitting porous Si," Applied Physic Letters, vol. 60, no. 8, pp. 1004-1006, 1992.
    [15] Z. L. Wang, "Progress in Piezotronics and Piezo-Phototronics," (in English), Advanced Materials, vol. 24, no. 34, pp. 4632-4646, 2012.
    [16] J. Fu, Y. D. Hou, M. P. Zheng, and M. K. Zhu, "Flexible Piezoelectric Energy Harvester with Extremely High Power Generation Capability by Sandwich Structure Design Strategy," ACS Applied Mateial. Interfaces, vol. 12, no. 8, pp. 9766-9774, 2020.
    [17] M. A. M. Roji, G. Jiji, and T. A. B. Raj, "A retrospect on the role of piezoelectric nanogenerators in the development of the green world,", RSC Advanced, vol. 7, no. 53, pp. 33642-33670, 2017.
    [18] Y. T. Chang et al., "Excellent piezoelectric and electrical properties of lithium-doped ZnO nanowires for nanogenerator applications,", Nano Energy, vol. 8, pp. 291-296, 2014.
    [19] H. X. Li et al., "Piezotronic and piezo-phototronic logic computations using Au decorated ZnO microwires,", Nano Energy, vol. 27, pp. 587-594, 2016.
    [20] C. Y. Chen et al., "Anisotropic Outputs of a Nanogenerator from Oblique-Aligned ZnO Nanowire Arrays,", ACS Nano, vol. 5, no. 8, pp. 6707-6713, 2011.
    [21] N. J. Ku, C. H. Wang, J. H. Huang, H. C. Fang, P. C. Huang, and C. P. Liu, "Energy Harvesting from the Obliquely Aligned InN Nanowire Array with a Surface Electron-Accumulation Layer.", Advanced Materials, vol. 25, no. 6, pp. 861-866, 2013.
    [22] Y. L. Su, K. Gupta, Y. L. Hsiao, R. C. Wang, and C. P. Liu, "Gigantic enhancement of electricity generation in piezoelectric semiconductors by creating pores as a universal approach,", Energy Environmental Science, vol. 12, no. 1, pp. 410-417, 2019.
    [23] A. Rutscher, "Characteristics of low-temperature plasmas under nonthermal conditions–a short summary," Low Temperature Plasmas: Fundamentals, Technologies and Techniques, vol. 1, pp. 1-14, 2008.
    [24] J. A. Bittencourt, Fundamentals of plasma physics. Springer Science & Business Media, 2013.
    [25] V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, and M. A. Iatì, "Surface plasmon resonance in gold nanoparticles: a review," Journal of Physics: Condensed Matter, vol. 29, no. 20, p. 203002, 2017.
    [26] J. Harry, Introduction to plasma technology. Wiley Online Library, 2010.
    [27] T. Kawaharamura, "Physics on development of open-air atmospheric pressure thin film fabrication technique using mist droplets: Control of precursor flow," Japanese Journal of Applied Physics, vol. 53, no. 51, p. 0508, 2014.
    [28] K. Wasa, I. Kanno, and H. Kotera, Handbook of sputter deposition technology: fundamentals and applications for functional thin films, nano-materials and MEMS. William Andrew, 2012.
    [29] G. Ehrlich, "Proceedings of the 9th International Vacuum Congress and 5th International Conference on Solid Surfaces, Invited Speakers' Volume," 1983.
    [30] K. S. Harsha, Principles of vapor deposition of thin films. Elsevier, 2005.
    [31] J. A. Thornton, "High rate thick film growth," Annual review of materials science, vol. 7, no. 1, pp. 239-260, 1977.
    [32] Y. Kajikawa, "Texture development of non-epitaxial polycrystalline ZnO films," Journal of Crystal Growth, vol. 289, no. 1, pp. 387-394, 2006.
    [33] P. J. P. Espitia, N. d. F. F. Soares, J. S. dos Reis Coimbra, N. J. de Andrade, R. S. Cruz, and E. A. A. Medeiros, "Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications," Food and bioprocess technology, vol. 5, no. 5, pp. 1447-1464, 2012.
    [34] U. Ozgur et al., "A comprehensive review of ZnO materials and devices," (in English), Journal of Applied Physic, vol. 98, no. 4, p. 103, 2005.
    [35] C. Pan et al., "Progress in Piezo‐Phototronic‐Effect‐Enhanced Light‐Emitting Diodes and Pressure Imaging," Advanced Materials, vol. 28, no. 8, pp. 1535-1552, 2016.
    [36] D. P. Norton et al., "ZnO: growth, doping & processing," Material Today, vol. 7, no. 6, pp. 34-40, 2004.
    [37] S. Bauer, "Piezo-, pyro-and ferroelectrets: soft transducer materials for electromechanical energy conversion," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 13, no. 5, pp. 953-962, 2006.
    [38] G. H. Haertling, "Ferroelectric ceramics: history and technology," Journal of the American Ceramic Society, vol. 82, no. 4, pp. 797-818, 1999.
    [39] Z. L. Wang, "Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics," Nano Today, vol. 5, no. 6, pp. 540-552, 2010.
    [40] L. S. Huo, D. D. Chen, Q. Z. Kong, H. N. Li, and G. B. Song, "Smart washer-a piezoceramic-based transducer to monitor looseness of bolted connection," Smart Material Structure, vol. 26, no. 2, p. 9, 2017.
    [41] S. Priya et al., "A review on piezoelectric energy harvesting: materials, methods, and circuits," Energy Harvesting and Systems, vol. 4, no. 1, pp. 3-39, 2019.
    [42] F. Xu, F. Chu, and S. Trolier-McKinstry, "Longitudinal piezoelectric coefficient measurement for bulk ceramics and thin films using pneumatic pressure rig," Journal of Applied Physic, vol. 86, no. 1, pp. 588-594, 1999.
    [43] I. Dakua and N. Afzulpurkar, "Piezoelectric energy generation and harvesting at the nano-scale: materials and devices," Nanomaterials and Nanotechnology, vol. 3, p. 21, 2013.
    [44] J. M. Liu, B. Pan, H. L. W. Chan, S. N. Zhu, Y. Y. Zhu, and Z. G. Liu, "Piezoelectric coefficient measurement of piezoelectric thin films: an overview," Material Chemistry and Physic, vol. 75, no. 1-3, pp. 12-18, 2002.
    [45] E. Soergel, "Piezoresponse force microscopy (PFM)," Journal of Physics D: Applied Physics, vol. 44, no. 46, p. 464003, 2011.
    [46] Z. L. Wang, "Nanopiezotronics," Advanced Materials, vol. 19, no. 6, pp. 889-892, 2007.
    [47] C. Pan, R. Yu, S. Niu, G. Zhu, and Z. L. Wang, "Piezotronic effect on the sensitivity and signal level of Schottky contacted proactive micro/nanowire nanosensors," ACS Nano, vol. 7, no. 2, pp. 1803-1810, 2013.
    [48] Y. Zhang, Y. Liu, and Z. L. Wang, "Fundamental theory of piezotronics," Advanced Materials, vol. 23, no. 27, pp. 3004-3013, 2011.
    [49] X. Wen, W. Wu, Y. Ding, and Z. L. Wang, "Piezotronic Effect in Flexible Thin‐film Based Devices," Advanced Materials, vol. 25, no. 24, pp. 3371-3379, 2013.
    [50] K. Länge, B. E. Rapp, and M. Rapp, "Surface acoustic wave biosensors: a review," Analytical and bioanalytical chemistry, vol. 391, no. 5, pp. 1509-1519, 2008.
    [51] Z. L. Wang and J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science, vol. 312, no. 5771, pp. 242-246, 2006.
    [52] X. D. Wang, J. H. Song, J. Liu, and Z. L. Wang, "Direct-current nanogenerator driven by ultrasonic waves,", Science, vol. 316, no. 5821, pp. 102-105, 2007.
    [53] Y. Hu, Y. Zhang, C. Xu, L. Lin, R. L. Snyder, and Z. L. Wang, "Self-powered system with wireless data transmission," Nano Letters, vol. 11, no. 6, pp. 2572-7, 2011.
    [54] G. Zhu, A. C. Wang, Y. Liu, Y. Zhou, and Z. L. Wang, "Functional electrical stimulation by nanogenerator with 58 V output voltage," Nano Letters, vol. 12, no. 6, pp. 3086-3090, 2012.
    [55] Y. Hu, Y. Zhang, C. Xu, G. Zhu, and Z. L. Wang, "High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display," Nano Letters, vol. 10, no. 12, pp. 5025-5031, 2010.
    [56] Y. Hu and Z. L. Wang, "Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors," Nano Energy, vol. 14, pp. 3-14, 2015.
    [57] P. X. Gao, J. Song, J. Liu, and Z. L. Wang, "Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices," Advanced Materials, vol. 19, no. 1, pp. 67-72, 2007.
    [58] X. Wang, J. Liu, J. Song, and Z. L. Wang, "Integrated nanogenerators in biofluid," Nano Letters, vol. 7, no. 8, pp. 2475-2479, 2007.
    [59] S. Cha et al., "Porous PVDF As Effective Sonic Wave Driven Nanogenerators," Nano Letters, vol. 11, no. 12, pp. 5142-5147, 2011.
    [60] S. Stassi, V. Cauda, C. Ottone, A. Chiodoni, C. F. Pirri, and G. Canavese, "Flexible piezoelectric energy nanogenerator based on ZnO nanotubes hosted in a polycarbonate membrane," Nano Energy, vol. 13, pp. 474-481, 2015.
    [61] F. L. Boughey, T. Davies, A. Datta, R. A. Whiter, S.-L. Sahonta, and S. Kar-Narayan, "Vertically aligned zinc oxide nanowires electrodeposited within porous polycarbonate templates for vibrational energy harvesting," Nanotechnology, vol. 27, no. 28, p. 28LT02, 2016.
    [62] R. Ganeshkumar, C. W. Cheah, R. Xu, S.-G. Kim, and R. Zhao, "A high output voltage flexible piezoelectric nanogenerator using porous lead-free KNbO3 nanofibers," Applid Physic Letters, vol. 111, no. 1, p. 013905, 2017.
    [63] Y. Zhang et al., "Performance enhancement of flexible piezoelectric nanogenerator via doping and rational 3D structure design for self‐powered mechanosensational system," Advanced Functional Materials, vol. 29, no. 42, p. 1904259, 2019.
    [64] S. K. Karan et al., "A new insight towards eggshell membrane as high energy conversion efficient bio-piezoelectric energy harvester," Material Today Energy, vol. 9, pp. 114-125, 2018.
    [65] P. Sahatiya, S. Kannan, and S. Badhulika, "Few layer MoS2 and in situ poled PVDF nanofibers on low cost paper substrate as high performance piezo-triboelectric hybrid nanogenerator: Energy harvesting from handwriting and human touch," Applied Materials Today, vol. 13, pp. 91-99, 2018.
    [66] M. M. Abolhasani et al., "Thermodynamic approach to tailor porosity in piezoelectric polymer fibers for application in nanogenerators," Nano Energy, vol. 62, pp. 594-600, 2019.
    [67] S. Cha et al., "Porous PVDF as effective sonic wave driven nanogenerators," Nano Letters, vol. 11, no. 12, pp. 5142-5147, 2011.
    [68] B. Mahanty, S. K. Ghosh, S. Garain, and D. Mandal, "An effective flexible wireless energy harvester/sensor based on porous electret piezoelectric polymer," Material Chemistry and Physic, vol. 186, pp. 327-332, 2017.
    [69] A. Sultana, P. Sadhukhan, M. M. Alam, S. Das, T. R. Middya, and D. Mandal, "Organo-lead halide perovskite induced electroactive β-phase in porous PVDF films: an excellent material for photoactive piezoelectric energy harvester and photodetector," ACS Applied Material Interfaces, vol. 10, no. 4, pp. 4121-4130, 2018.
    [70] Y. Z. Zhang et al., "Performance Enhancement of Flexible Piezoelectric Nanogenerator via Doping and Rational 3D Structure Design For Self-Powered Mechanosensational System," Advanced Functional Materials, vol. 29, no. 42, p. 12, Oct 2019.
    [71] 劉家渝, "多孔氧化鋅奈米柱之增益光電化學分解水反應之研究," 材料科學及工程學系, 國立成功大學, 2019年, 2019.
    [72] C. B. Carter and D. B. Williams, Transmission electron microscopy: Diffraction, imaging, and spectrometry. Springer, 2016.
    [73] K. K. Jha, N. Suksawang, D. Lahiri, and A. Agarwal, "Energy-Based Analysis of Nanoindentation Curves for Cementitious Materials," ACI Materials Journal, vol. 109, no. 1, 2012.
    [74] J. Kováčik, "Correlation between Young's modulus and porosity in porous materials," Journal of materials science letters, vol. 18, no. 13, pp. 1007-1010, 1999.
    [75] B.-K. Jang and H. Matsubara, "Influence of porosity on hardness and Young's modulus of nanoporous EB-PVD TBCs by nanoindentation," Materials Letters, vol. 59, no. 27, pp. 3462-3466, 2005.
    [76] X. Wang, C. Song, D. Li, K. Geng, F. Zeng, and F. Pan, "The influence of different doping elements on microstructure, piezoelectric coefficient and resistivity of sputtered ZnO film," Applied Surface Science, vol. 253, no. 3, pp. 1639-1643, 2006.
    [77] Y. Zhang et al., "Lattice strain induced remarkable enhancement in piezoelectric performance of ZnO-based flexible nanogenerators," ACS Applied Material Interfaces, vol. 8, no. 2, pp. 1381-1387, 2016.
    [78] M. Asghar, K. Mahmood, M. Y. Raja, and M. Hasan, "Synthesis and characterization of ZnO nanorods using molecular beam epitaxy," in Advanced Materials Research, vol. 622, pp. 919-924, 2013.
    [79] Y. Heo et al., "Effects of high-dose Mn implantation into ZnO grown on sapphire," Applied Physic Letters, vol. 84, no. 13, pp. 2292-2294, 2004.
    [80] J. Zhou et al., "Piezoelectric-Potential-Control led Polarity-Reversible Schottky Diodes and Switches of ZnO Wires," Nano Letters, vol. 8, no. 11, pp. 3973-3977, 2008.

    下載圖示 校內:2025-08-17公開
    校外:2025-08-17公開
    QR CODE