| 研究生: |
張宇帆 Chang, Yu-Fan |
|---|---|
| 論文名稱: |
具複合導電性能陰極在固態氧化物燃料電池電化學阻抗之研究 Electrochemical impedance characteristics of dual-conduction composite cathode for IT-SOFC |
| 指導教授: |
方冠榮
Fung, Kuan-Zong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 固態氧化物燃料電池 、陰極 、電化學性能 |
| 外文關鍵詞: | solid oxide fuel cell, cathode, electrochemical performance |
| 相關次數: | 點閱:97 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鑭酸鍶錳(LSM)由於在氧化氣氛下穩定且具備充足導電率(~200S/cm at 800℃)常用來做為固態氧化物燃料電池(SOFC)之陰極,然而由於缺乏離子導電率,包含電子導體、離子導體及氣體的三相界(TPB)被限制在電極及電解質間的界面,由許多研究者藉由將離子導體混入陰極中提高陰極氧還原反應(ORR)之反應面積以降低SOFC陰極之極化阻抗。釔安定氧化鉍(YSB)具有高離子導性與對氧的催化能力,本研究將YSB與奈米級之LSM混合製成複合陰極,由於三相界的延長,陰極之ORR的反應面積增加提高了反應速率並降低陰極之極化阻抗。
然而,包含氧化鉍之複合陰極的氧化原反應速率限制步驟尚未明確,本研究藉由電化學阻抗分析不同YSB含量之LSM-YSB複合陰極在不同溫度下之極化阻抗,不同的YSB含量會影響陰極對氧還原反應的催化能力,然而若使用過量的YSB,LSM將無法形成連續導體並限制住陰極之ORR。
為了研究電解質對陰極的影響,釔安定氧化鋯(YSZ)、釤摻雜氧化鈰(SDC)及YSB被用來做為LSM-YSB複合陰極之電解質,氧離子導性低的電解質會由於氧較難進入氧晶格而使極化阻抗上升。
本研究中當LSM-YSB複合陰極中YSB含量為70vol%且以YSB做為電解質時,在650℃時之及化阻抗僅有0.09ohmcm2,能有如此低的及化阻抗是因為陰極在有連續性導體的前提下有最佳的對ORR催化能力,藉由這些實驗測試將能更明確的瞭解陰極之反應機制。
Lanthanum-strontium manganite (LSM) was the classic cathode material for SOFCs due to its high stability in oxidizing atmospheres, and sufficient electrical conductivity at high temperature (~200S/cm at 800℃). However, insufficient ion conductivity of LSM restricted its oxygen reduction reaction (ORR) to the cathode/electrolyte interface where consist of electronic conductor, ionic conductor, and gas phase (Triple phase boundary, TPB). Several researchers have reported a method to significantly lower cathode polarization resistance (RP) by introducing ionic conductor into SOFCs cathode. Yttria-stabilized bismuth oxides (YSB) which exhibit high ionic conductivity and excellent oxygen electrocatalysis were mixed with nano-sized LSM to form composite cathodes. The extension of ORR site tends to enhance the reaction rate and decrease polarization resistance of the cathode.
In addition, the rate-determining steps for the ORR in bismuth oxide base composite cathode also needs to be explored. In this study, the electrochemical performances of composite cathodes with different LSM:YSB ratio were investigated using electrochemical impedance spectroscopy at various temperatures ranging from 500℃ to 650℃. The YSB content in composite may affect the catalytic activity toward the ORR. However, excessive YSB fraction may cause discontinuity in electronic pathway and then limit ORR of cathode.
To investigate the influence of electrolyte to cathode performance. Yttria-stabilized zirconia (YSZ), samarium-doped ceria (SDC), and YSB electrolyte were used to compare the composite cathode performance with different ionic conductivity electrolyte (ionic conductivity YSB>SDC>YSZ). The electrolyte with low ionic conductivity will increase the impedance of oxygen ion incorporation into oxygen sublattice. The interface of cathode /low ionic conductivity electrolyte limit the cathode performance by increasing polarization resistance.
The RP of LSM-YSB composite cathode shows lowest RP of 0.09 ohmcm2 at 650℃ when the volume fraction of YSB is 70%. The low RP measured from composite cathode is due to the high catalytic ability and sufficient electronic conduction. With the measurement and analysis of polarization impedance, better understanding of the cathodic reaction is achieved.
1. Ellen, I.T. and A.V. Virkar, High temperature solid oxide fuel cells : fundamentals, desigh and applications. 2003, Elsevier. p. 229-260.
2. Huang, C.C. and K.Z. Fung, Effect of the surface configuration on the oxidation of bismuth nanowire. Materials Research Bulletin, 2006. 41(9): p. 1604-1611.
3. Huang, S., Z. Zong, and C. Peng, Development of Ag-(BaO)0.11(Bi2O3)0.89 composite cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2007. 173(1): p. 415-419.
4. Boivin, J.C. and G. Mairesse, Recent Material Developments in Fast Oxide Ion Conductors. Chemistry of Materials, 1998. 10(10): p. 2870-2888.
5. Fung, K.Z. and A.V. Virkar, Phase Stability, Phase Transformation Kinetics, and Conductivity of Y2O3—Bi2O3 Solid Electrolytes Containing Aliovalent Dopants. Journal of the American Ceramic Society, 1991. 74(8): p. 1970-1980.
6. Peng, R., et al., Characteristics of La0.85Sr0.15MnO3–δ Powders Synthesized by a Glycine-Nitrate Process. Fuel Cells, 2006. 6(6): p. 455-459.
7. Fung, K.-Z., et al., Stability of Composite Cathode Consisting of Doped Bismuth Oxide (Y0.25Bi0.75O1.5) and Conducting Perovskite La1-XSrxMeO3-δ (Me=Mn, Cu). ECS Transactions, 2013. 57(1): p. 1917-1923.
8. Wu, L., et al., (La,Sr)MnO3–(Y,Bi)2O3 composite cathodes for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2013. 38(5): p. 2398-2406.
9. Escudero, M.J., et al., A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy. Journal of Electroanalytical Chemistry, 2007. 611(1-2): p. 107-116.
10. Liu, B., Y. Zhang, and L. Zhang, Oxygen reduction mechanism at Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode for solid oxide fuel cell. International Journal of Hydrogen Energy, 2009. 34(2): p. 1008-1014.
11. Colpan, C.O., I. Dincer, and F. Hamdullahpur, A review on macro-level modeling of planar solid oxide fuel cells. International Journal of Energy Research, 2008. 32(4): p. 336-355.
12. Chan, S.H., K.A. Khor, and Z.T. Xia, A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. Journal of Power Sources, 2001. 93(1–2): p. 130-140.
13. Di Carlo, A., E. Bocci, and V. Naso, Process simulation of a SOFC and double bubbling fluidized bed gasifier power plant. International Journal of Hydrogen Energy, 2013. 38(1): p. 532-542.
14. Cong, L., et al., Synthesis and characterization of IT-electrolyte with perovskite structure La0.8Sr0.2Ga0.85Mg0.15O3−δ by glycine–nitrate combustion method. Journal of Alloys and Compounds, 2003. 348(1–2): p. 325-331.
15. Rørmark, L., et al., Oxygen stoichiometry and structural properties of La1 – xAxMnO3 ± δ (A = Ca or Sr and 0 ≤ x ≤ 1). Journal of Materials Chemistry, 2002. 12(4): p. 1058-1067.
16. Camaratta, M., Microstructural engineering of composite cathode systems for intermediate and low-temperature solid oxide fuel cells. 2007.
17. Zhu, W., D. Ding, and C. Xia, Enhancement in Three-Phase Boundary of SOFC Electrodes by an Ion Impregnation Method: A Modeling Comparison. Electrochemical and Solid-State Letters, 2008. 11(6): p. B83.
18. Wachsman, E.D., Electro-catalytically Active, High Surface Area Cathodes for Low Temperature SOFCs. 2006, University Of Florida.
19. Liu, J., et al., Oxygen reduction at sol–gel derived La0.8Sr0.2Co0.8Fe0.2O3 cathodes. Solid State Ionics, 2006. 177(3-4): p. 377-387.
20. Fernández-González, R., et al., Characterization and fabrication of LSCF tapes. Journal of the European Ceramic Society, 2014. 34(4): p. 953-959.
21. Goodenough, J.B., OXIDE-ION ELECTROLYTES. Annual Review of Materials Research, 2003. 33(1): p. 91-128.
22. Malavasi, L., C.A.J. Fisher, and M.S. Islam, Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chemical Society Reviews, 2010. 39(11): p. 4370-4387.
23. Marrocchelli, D., et al., Understanding Chemical Expansion in Non-Stoichiometric Oxides: Ceria and Zirconia Case Studies. Advanced Functional Materials, 2012. 22(9): p. 1958-1965.
24. Yahiro, H., et al., Electrical properties and microstructure in the system ceria-alkaline earth oxide. Journal of Materials Science, 1988. 23(3): p. 1036-1041.
25. Biswas, M., Electrolyte Materials for Solid Oxide Fuel Cell. J Powder Metall Min, 2013. 2(117): p. 2.
26. Figueiredo, F.M.L. and F.M.B. Marques, Electrolytes for solid oxide fuel cells. Wiley Interdisciplinary Reviews: Energy and Environment, 2013. 2(1): p. 52-72.
27. Matsui, T., et al., Effects of mixed conduction on the open-circuit voltage of intermediate-temperature SOFCs based on Sm-doped ceria electrolytes. Solid State Ionics, 2005. 176(7-8): p. 663-668.
28. Sammes, N., et al., Bismuth based oxide electrolytes—structure and ionic conductivity. Journal of the European Ceramic Society, 1999. 19(10): p. 1801-1826.
29. Jung, D.W., Conductivity and stability of bismuth oxide-based electrolytes and their applications for IT-SOFCs. 2009, University of Florida.
30. Takahashi, T. and H. Iwahara, Oxide ion conductors based on bismuthsesquioxide. Materials Research Bulletin, 1978. 13(12): p. 1447-1453.
31. Jacobson, A.J., Materials for Solid Oxide Fuel Cells†. Chemistry of Materials, 2010. 22(3): p. 660-674.
32. Fung, K.Z., H.D. Baek, and A.V. Virkar, Thermodynamic and kinetic considerations for Bi 2 O 3-based electrolytes. Solid State Ionics, 1992. 52(1): p. 199-211.
33. Watanabe, A., Is it possible to stabilize δ-Bi2O3 by an oxide additive? Solid State Ionics, 1990. 40–41, Part 2(0): p. 889-892.
34. Haile, S.M., Fuel cell materials and components. Acta Materialia, 2003. 51(19): p. 5981-6000.
35. Wang, S., et al., Promoting effect of YSZ on the electrochemical performance of YSZ+ LSM composite electrodes. Solid State Ionics, 1998. 113: p. 291-303.
36. Jung, W.C., et al., The Korean Ceramic Society, 2014. 51(4): p. 278-282.
37. Zhou, W., et al., LSCF Nanopowder from Cellulose–Glycine-Nitrate Process and its Application in Intermediate-Temperature Solid-Oxide Fuel Cells. Journal of the American Ceramic Society, 2008. 91(4): p. 1155-1162.
38. Lee, K.T., et al., Interfacial modification of La0.80Sr0.20MnO3−δ–Er0.4Bi0.6O3 cathodes for high performance lower temperature solid oxide fuel cells. Journal of Power Sources, 2012. 220: p. 324-330.
39. Li, J., et al., La0.84Sr0.16MnO3−δ cathodes impregnated with Bi1.4Er0.6O3 for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2009. 194(2): p. 625-630.
40. Jiang, Z., et al., Electrochemical characteristics of solid oxide fuel cell cathodes prepared by infiltrating (La,Sr)MnO3 nanoparticles into yttria-stabilized bismuth oxide backbones. International Journal of Hydrogen Energy, 2010. 35(15): p. 8322-8330.
41. Jiang, Z., et al., Nanoscale bismuth oxide impregnated (La,Sr)MnO3 cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2008. 185(1): p. 40-48.
42. la O’, G.J. and Y. Shao-Horn, Oxygen Surface Exchange Kinetics on Sr-Substituted Lanthanum Manganite and Ferrite Thin-Film Microelectrodes. Journal of The Electrochemical Society, 2009. 156(7): p. B816.
43. Lee, S., et al., Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) and La0.6Ba0.4Co0.2Fe0.8O3−δ (LBCF) cathodes prepared by combined citrate-EDTA method for IT-SOFCs. Journal of Power Sources, 2006. 157(2): p. 848-854.
44. Li, J., et al., (La0.74Bi0.10Sr0.16)MnO3−δ–(Bi2O3)0.7(Er2O3)0.3 composite cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2008. 179(2): p. 474-480.
45. Greene, E.S., W.K.S. Chiu, and M.G. Medeiros, Mass transfer in graded microstructure solid oxide fuel cell electrodes. Journal of Power Sources, 2006. 161(1): p. 225-231.
46. Li, Y., R. Gemmen, and X. Liu, Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes. Journal of Power Sources, 2010. 195(11): p. 3345-3358.
47. Kuboyama, H., T. Shoho, and M. Matsunaga, Impedance Spectra of Solid Oxide Fuel Cell, in Solid Oxide Fuel V. 1997, The Electrochemical Society,Inc. p. 404-410.
48. Virkar, A.V., et al., The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells. Solid State Ionics, 2000. 131(1–2): p. 189-198.
49. Mohammadi, R., et al., Electrochemical Impedance Modeling of a Solid Oxide Fuel Cell Anode. Fuel Cells, 2014. 14(4): p. 645-659.
50. Muranaka, M., et al., Performance and Microstructure of Porous LSCF-Ag Cermet Cathode for LSGM Electrolyte Solid Oxide Fuel Cells. ECS Transactions, 2009. 16(51): p. 71-81.
51. Fung, K.Z., J. Chen, and A.V. Virkar, Effect of Aliovalent Dopants on the Kinetics of Phase Transformation and Ordering in RE2O3-Bi2O3 (RE = Yb, Er, Y, or Dy) Solid Solutions. Journal of the American Ceramic Society, 1993. 76(10): p. 2403-2418.
52. Jiang, N. and E.D. Wachsman, Structural Stability and Conductivity of Phase-Stabilized Cubic Bismuth Oxides. Journal of the American Ceramic Society, 1999. 82(11): p. 3057-3064.
53. Co, A.C., S.J. Xia, and V.I. Birss, A Kinetic Study of the Oxygen Reduction Reaction at LaSrMnO[sub 3]-YSZ Composite Electrodes. Journal of The Electrochemical Society, 2005. 152(3): p. A570.
54. Franks, W., et al., Impedance characterization and modeling of electrodes for biomedical applications. Biomedical Engineering, IEEE Transactions on, 2005. 52(7): p. 1295-1302.
55. Qiang, F., et al., Characterization of electrical properties of GDC doped A-site deficient LSCF based composite cathode using impedance spectroscopy. Journal of Power Sources, 2007. 168(2): p. 338-345.