| 研究生: |
林博文 Lin, Po-Wen |
|---|---|
| 論文名稱: |
逆微胞法製備硒化鎘奈米粉體之研究 Preparation of Cadmium Selenide Nanoparticles in Reverse Micelles |
| 指導教授: |
陳慧英
Chen, Huey-Ing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 光致激光 、逆微胞 、奈米粒子 、硒化鎘 |
| 外文關鍵詞: | photoluminescence, reverse micelle, nanoparticle, CdSe |
| 相關次數: | 點閱:58 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係以硝酸鎘與亞硫酸硒鈉為前驅鹽,採用逆微胞法合成奈米級硒化鎘(CdSe)粉體。實驗中,以二辛基磺基丁二酸鈉(AOT)為界面活性劑,探討W0值、反應溫度、[Cd2+]/[Se2-]比例、前驅鹽比例、溶劑種類等製備變因對所得微粉晶態、粒徑及其分佈之影響。另外,對於所製備粉體之UV吸收及放光性質亦加以探討。
實驗結果顯示,以逆微胞法合成的硒化鎘粉體晶態為面心立方型;藉由DLS測量及TEM分析可知,硒化鎘粉體會穩定分散於逆微胞內,且提升W0值、反應溫度、[Cd2+]/[Se2-]比例及前驅鹽濃度至某適當值時,粉體粒徑呈現一最小值。以環己烷、異辛烷、正己烷、正庚烷、正十二烷為溶劑製備CdSe粉體,結果發現以正己烷為溶劑所製備之硒化鎘粉體粒徑最小。實驗結果並顯示,當CdSe粉體粒徑減小時,其吸光及放光波長均呈現藍位移之現象,此粉體之能隙亦變大。
在本實驗條件下,所得粉體之能隙約在2.1-3.0 eV之間,理論粒徑在5.4-3.3 nm間。為提供多元應用性,CdSe奈米粉體可藉由簡單地調變逆微胞系統之製備條件而獲得不同的吸放光能階。
In this study, nano-sized CdSe particles were synthesized by the reverse micelle method, starting from Cd(NO3)2 and Na2SeSO3. Dioctyl sulfosuccinate sodium salt (AOT) was added as the surfactant. The effects of preparation conditions, such as W0 value, reaction temperature, [Cd2+]/[Se2-] ratio, concentrations of precursors and solvents, on the characteristics of prepared CdSe particles including the crystalline structure, particle size and size distribution were investigated. Furthermore, the ultraviolet absorption and photoluminescent properties of the particles were also studied.
The experimental results showed that the resulting CdSe nanoparticles synthesized by the reverse micelle method were are all fcc-structured. From the results of DLS and TEM observations, it was found that the prepared CdSe nanoparticles were stablely dispersed in the reverse micelles. Moreover, the size of CdSe particles decreased to a minimum as increasing the W0 value, reaction temperature, [Cd2+]/[Se2-] ratio and concentrations of precursors to their optima. Various solvents, i.e., cyclohexane, isooctane, hexane, heptane and dodecane were used for the study of solvent effect. The result showed that the CdSe nanoparticles synthesized in hexane system demonstrated the minimum particle size. It also revealed that the UV/VIS absorption and photoluminescence spectra were toward blue shift with decreasing the size of CdSe particles. Therefore, the bandgap of particles became larger.
In this study, the prepared CdSe particles were sizing from 5.4 to 3.3 nm which were corresponded to band gaps from 2.1 to 3.0 eV. In order to meet versatile applications, the bandgap of the prepared CdSe nanoparticles could be simply modulated by the preparation conditions in the reverse micelle system.
1. C. Hayashi, “Ultrafine Particles,” Phys. Today, 40(12), 44-51 (1987).
2. H. J. Fenlder, “Atomic and Molecular Clusters in Membrane Mimetic Chemistry,” Chem. Rev., 87, 877 (1987).
3. T. Linnert, P. Mulvaney and A. Henglein, “Surface Chemistry of Colloidal Silver: Surface Plasmon Damping by Chemisorbed Iodide, Hydrosulfide (SH-), and Phenylthiolate,” J. Phys. Chem., 97, 679 (1993).
4. S. M. Sze, “Physics of Semiconductor Device,” Wiley Interscience Publication, New York, (1981).
5. L. Qu and X. Peng, “Control of Photoluminescence Properties of CdSe Nanocrystals in Growth,” J. Am. Chem. Soc., 124(9), 2049-2055 (2002).
6. S. H. Kim, G. Markovich, S. Rezvani, S. H. Choi, K. L. Wang and J. R. Heath, “Tunnel Diodes Fabricated form CdSe Nanocrystals Monolayers,” Appl. Phys. Lett., 74(2), 317-319 (2001).
7. N. Tessler, V. Medvedev, M. Kazes, S. H. Kan and U. Banin, “Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes,” Science, 295, 1506-1508 (2002).
8. S. Coe , W. K. Woo, M. Bawendi and V. Bulovic, “Electroluminescence from Single Monolayers of Nanocrystals in Organic Molecular,” Nature, 420, 800-803 (2002).
9. M. B. Jr., M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, “Semiconductor Nanocrystals as Fluorescent Biological Labels,” Science, 295, 1506-1508 (2002).
10. W. C. W. Chan and S. Nie, “Quantum Dot Bioconjugates for Ultrasensitive Noisotopic Detection,” Science, 281, 2016-2018 (1998).
11. X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J P. Larson, N. Ge, F. Peale and M. P. Bruchez, “Immunofluorescent Labeling of Cancer Marker Her2 and Other Celluar Targets with Semiconductor Quantum Dots,” Nat. Biotechnol., 21, 41-46, (2003)
12. M. Morales, P. J. Sebastian and O. Solorza, “Characterization of Screen Printed Ti/CdS and Ti/CdSe Photoelectrodes for Photoelectrochemical Hydrogen Production,” Sol. Energy Mater. Sol. Cells, 55(1-2), 51-58 (1998).
13. A. J. Nozik, “Quantum Dot Solar Cells,” Physica E, 14(1-2), 115-120 (2002).
14. M. Klude, T. Passow, R. Kroger and D. Hommel, “Electrically Pumped Lasing from CdSe Quantum Dots,” Electron. Lett., 37(18), 1119-1120 (2001).
15. V. A. Kasiyan, R. Z. Shneck, Z. M. Dashevsky and S. R. Rotman, “Development of AⅡBⅥ Semiconductors Doped with Cr for IR Laser Application,” Phys. Stat. Sol., 229(1), 395-398 (2002).
16. D. L. Klein, R. Roth, A. K. Lim, A. P. Alivisatos and P. L. McEuen, “A Single-Electron Transistor Made from a Cadmium Selenide Nanocrystal,” Nature, 389, 699-701 (1997).
17. D. L. Feldheim and C. D. Keating, ”Self-Assembly of Single Electron Transistors and Related Devices,” Chem. Soc. Rev., 27(1), 1-12 (1998).
18. B. O. Dabbousi and M. G. Bawendi, “Electroluminescence form CdSe Quantum-Dot/Polymer Composites,” Appl. Phys. Lett., 66(11), 1316-1318 (1995).
19. M. GaO, B. Richter, S. Kirstein and H. Mohwald, “Electroluminescence Studies on Self-Assembled Films of PPV and CdSe Nanoparticles,” J. Phys. Chem. B, 102(21), 4096-4103 (1998).
20. K. Walzer, U. J. Quaade, D. S. Ginger, N. C. Greenham and K. Stokbro, “Adsorption Behavior and Current-Voltage Characteristics of CdSe Nanocrystals on Hydrogen-Passivated Silicon,” J. Appl. Phys., 92(3), 1343-1440 (2002).
21. A. Y. Nazzal, L. Qu, X. Peng and M. Xiao, “Photoactivated CdSe Nanocrystals as Nanosensors for Gases,” Nano Lett., 3(6), 819-822 (2003).
22. Q. Peng, Y. Dong, Z. Deng, X. Sun and Y. Li, “Low-Temperature Elemental-Direct-Reaction Route to Ⅱ-Ⅵ Semiconductor Nanocrystalline ZnSe and CdSe,” Inorg. Chem., 40(16), 3840-3841 (2001).
23. C. Wang, W. X. Zhang, X. F. Qian, X. M. Zhang, Y. Xie and Y. T. Qian, “An Aqueous Approach to ZnSe and CdSe Semiconductor Nanocrystals,” Mater. Chem. Phys., 60, 99-102 (1999).
24. W. Wang, Y. Geng, P. Yan, F. Liu, Y. Xie and Y. Qian, “Synthesis and Characterization of MSe (M=Zn, Cd) Nanorods by a New Solvothermal Method,” Inorg. Chem. Commun., 2, 83-85 (1999).
25. Y. Li, H. Liao, Y. Fan, L. Li and Y. Qian, “A Solvothermal Synthetic Route to CdE (E=S, Se) Semiconductor Nanocrystalline,” Mater. Chem. Phys., 58, 87-89 (1999).
26. Q. Yang, K. Tang, C. Wang, C. Zhang and Y. Qian, “Wet Synthesis and Characterization of MSe (M=Cd, Hg) Nanocrystallines at Room Temperature,” J. Mater. Res., 17(5), 1147-1152 (2002).
27. X. D. Ma, X. F. Qian, J. Yin, H. A. Xi and Z. K. Zhu, “Preparation and Characterization of Polyvinyl Alcohol-Capped CdSe Nanoparticles at Room Temperature,” J. Colloid Interface Sci. , 252, 77-81 (2002).
28. H. H. Song, Z. Fang and H. Q. Guo, Acta Phys.-Chim. Sin., 19, 9-12 (2003).
29. T. Trindade and P. O’Brien, “Synthesis of CdS and CdSe Nanoparticles by Thermolysis of Diethyldithio-or Diethyldiseleno-Carbamates of Cadmium,” J. Mater. Chem., 6(3), 343-347 (1996).
30. T. Trindade and P. O’Brien, “Synthesis of CdS and CdSe Nanocrystallites Using a Novel Single-Molecule Precursors Approach,” Chem. Mater., 9(2), 523-530 (1997).
31. M. Green and P. O’Brien, “Recent Advances in the Preparation of Semiconductors as Isolated Nanometric Particles: New Routes to Quantum Dots,” Chem. Commun., (22), 2235-2241 (1999).
32. G. Rafeletos, S. Norager and P. O’Brien, “Evidence for the Chemical Nature of Capping in CdSe Nanoparticles Prepared by Thermolysis in Tri-n-octylphosphine Oxide from P-edge EXAFS Spectroscopy,” J. Mater. Chem., 11(10), 2542-2544 (2001).
33. L. Qu, Z. A. Peng and X. Peng, “Alternative Routes toward High Quality CdSe Nanocrystals,” Nano. Lett., 1(6), 333-337 (2001).
34. Z. A. Peng and X. Peng, “Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor,” J. Am. Chem. Soc., 123(1), 183-184 (2001).
35. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich and A. P. Alivisatos, “Shape Control of CdSe Nanocrystals,” Nature, 404, 59-61 (2000).
36. L. Qu, Z. A. Peng and X. Peng, “Alternative Routes toward High Quality CdSe Nanocrystals,” Nano. Lett., 1(6), 333-337 (2001).
37. Z. A. Peng and X. Peng, “Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor,” J. Am. Chem. Soc., 123(1), 183-184 (2001).
38. Z. A. Peng and X. Peng, “Mechanisms of the Shape Evolution of CdSe Nanocrystals,” J. Am. Chem. Soc., 123(7), 1389-1395 (2001).
39. Z. A. Pang and X. Peng, “Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes: Nucleation and Growth,” J. Am. Chem. Soc., 124 (13), 3343-3353 (2002).
40. X. Peng, “Mechanisms for the Shape-Control and Shape-Evolution of Colloidal Semiconductor Nanocrystals,” Adv. Mater., 15(5), 459-463 (2003).
41. C. B. Murray, D. J. Norris and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E= S, Se, Te) Semiconductor Nanocrystallites,” J. Am. Chem. Soc., 115, 8706-8715 (1993).
42. L. Manna, E. C. Scher and A. P. Alivisators, “Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals,” J. Am. Chem. Soc., 122(51), 12700-12706 (2000).
43. J. Hambrock, A. Birkner and R. A. Fischer, “Synthesis of CdSe Nanoparticles Using Various Organometallic Cadmium Precursors,” J. Mater. Chem., 11(12), 3197-3201 (2001).
44. O. Palchik, R. Kerner, A. Gedanken, A. M. Weiss, M. A. Slifkin and V. Palchik, “Microwave-Assisted Polyol Method for the Preparation of CdSe Nanoballs,” J. Mater. Chem., 11, 874-878 (2001).
45. J. Zhu, O. Palchik, S. Chen and A. Gedanken, “Microwave Assisted Preparation of CdSe, PbSe, and Cu2-xSe Nanoparticles,” J. Phys. Chem. B, 104, 7344-7347 (2000).
46. J. P. Ge, Y. D. Li and G. Q. Yang, “Mechanism of Aqueous Ultrasonic Reaction: Controlled Synthesis, Luminescence Properties of Amorphous Cluster and Nanocrystalline CdSe,” Chem. Commum., 17, 1826-1827 (2002).
47. X. Zheng, Y. Xie, L. Zhu, X. Jiang and A. Yan, “Formation of Vesicle-Templated CdSe hollow Spheres in an Ultrasound-Induced Anionic Surfactant Solution,” Ultrason. Sonochem., 9(6), 311-316 (2002).
48. H. L. Li, Y. C. Zhu, S. G. Chen, O. Palchik, J. P. Xiong, Y. Koltypin,
Y. Gofer and A. Gedanken, “A Novel Ultrasound-Assisted Approach to the Synthesis of CdSe and CdS Nanoparticles,” J. Solid State Chem., 172(1), 102-110 (2003).
49. J. Zhu, X. Liao, X. Zhao and J.Wang, “Photochemical Synthesis and
Characterization of CdSe Nanoparticles,” Mater Lett., 47(6), 339-343
(2001).
50. X. Ge. Y. Ni, H. Liu, Q. Ye and Z. Zhang, “-Irradiation Preparation of Cadmium Selenide Nano-Particles in Ethylenediamine System,” Mater. Res. Bull., 36(9), 1609-1613 (2001).
51. Q. Yang, K. Tang, F. Wang, C. Wang and Y. Qian, “A -Irradiation Reduction Route to Nanocrystalline CdE (E= Se, Te) at Room Tepmerature,” Mater Lett., 57(22-23), 3508-3512 (2003).
52. Y. Hu, W. Chen, J. Chen and S. Zhang, “A Novel Route to Prepare CdSe Hollow Structures,” Mater Lett., 57(21), 3137-3139 (2003).
53. W. B. Zhao, J. J. Zhu and H. Y. Chen, “Photochemical Preparation of Rectangular PbSe and CdSe Nanoparticles,” J. Cryst. Growth. , 2(4), 587-592 (2003).
54. E. Hao, H. Sun, Z. Zhou, J. Liu, B. Yang and J. Shen, “Synthesis and Optical Properties of CdSe and CdSe/CdS Nanoparticles,” Chem. Mater., 11(11), 3096-3102 (1999).
55. L. Xu, L. Wang, X. Huang, J. Zhu, H. Chen and K. Chen, “Surface Passivation and Enhanced Quantum-Size Effect and Photo Stability of Coated CdSe/CdS Nanocrystals,” Pyhsica E, 8(2), 129-133 (2000).
56. C. C. Chen, C. Y. Chu and Z. H. Lang, “Simple Solution-Phase Synthesis of Soluble CdS and CdSe Nanorods,” Chem. Mater., 12(6), 1516-1518 (2000).
57. A. Kasyua, G. Milczarek, I. Dmitruk, Y. Barnakov, R. Czajka, O. Perales, X. Liu, K. Tohji, B. Jeyadevan, K. Shinoda, T. Ogawa, T. Arai,
T. Hihara and K. Sumiyama, “Size- and Shape-Controls and Electronic Functions of Nanometer-Scale Semiconductors and Oxides,” Colloid Surf. A-Physicochem. Eng. Asp., 202(2-3), 291-296 (2002).
58. N. Chandrasekharan and Prashant V. Kamat, “Tuning the properties of CdSe Nanoparticles in Reverse Micelles,” Res. Chem. Intermed., 28(7-9), 847-856 (2002).
59. X. D. Ma, X. F. Qian, J. Yin, H. A. Xi and Z. K. Zhu, “Preparation and Characterization of Polyvinyl Alcohol-Capped CdSe Nanoparticles at Room Temperature,” J. Colloid Interface Sci., 252(1), 77-81 (2002).
60. P. P. Hankare, V. M. Bhuse, K. M. Garadkar, S. D. Delekar, I. S. Mulla, “Low Temperature Route to Grow Polycrystalline Cadmium Selenide and Mercury Selenide Thin Films,” Mater. Chem. Phys., 82(3), 711-717 (2003).
61. W. Yu, M. Liu, H. Liu, X. Ma and Zhijie Liu, “Preparation, Characterization, and Catalytic Properties of Polymer-Stabilizad Ruthenium Colloids,” J. Colloid Interface Sci., 208, 439-444 (1998).
62. K. Shinoda and B. Lindman, “Organized Surfactant Systems: Microemulsions,” Langmuir, 3, 135-149 (1987).
63. M. T. Reetz, W. Helbig, S. A. Quaiser, U. Stimming, N. Breuer, R. Vogel, “Visualization of Surfactants on Nanostructured Palladium Clusters by a Combination of STM and High-Resolution TEM,” Science, 267(5196), 367-369 (1995).
64. K. V. Sarathy, G. Raina, R. T. Yadav, G. U. Kulkarni and C. N. R. Rao, “Thiol-Derivatized Nanocrystalline Arrays of Gold, Silver, and Platinum,” J. Phys. Chem. B, 101, 9876-9880 (1997).
65. G. Schmid, “Large Clusters and Colloids. Metals in the Embryonic State,” Chem. Rev., 92, 1709-1727 (1992).
66. S. Brinetti, D. Roux, A. M. Beliocq, G. Fourche and P. Bothorel, “Micellar Interactions in Water-in-Oil Microemulsions. 2. Light Scattering Determination of the Second Virial Coefficient,” J. Phys. Chem., 87, 1028-1034 (1983).
67. M. Zulauf and Hans-Friedrich Eicke, “Inverted Micelles and Microemulsions in the Ternary System H2O/Aerosol-OT/Isooctane as Studied by Photo Correlation Spectroscopy,” J. Phys. Chem., 83, 480-486 (1979).
68. K. Osseo-Asare and F. J. Arriagada, “Preparation of SiO2 Nanoparticles in a Nonionic Reverse Micellar System,” Colloids Surfaces, 50, 321 (1990).
69. A. S. Bommarius, J. F. Holzwarth, D. I. C. Wang and T. A. Hatton, “Coalescence and Solubilizate Exchange in a Cationic Four-Component Reversed Micellar System,” J. Phys. Chem., 94, 7232-7239 (1990).
70. J. Schmidt, C. Guesdon and R.Schomacker, “Engineering Aspects of Preparation of Nanocrystalline Particles in Microemulsions,” J. Nanopart. Res., 1, 267-276 (1999).
71. R. P. Bagwe and K. C. Khilar, “Effects of the Intermicellar Exchange Rate and Cations on the Size of Silver Chloride Nanoparticles Formed in Reverse Micelles of AOT,” Langmuir, 13, 6432-6438 (1997).
72. K. Martinek, “Plenary Lecture at the 14th Iub Congress-Micellar Enzymology-Potentialities in Fundamental and Applied Areas,” Biochem. Intern., 18, 871 (1989).
73. K. Kon-No and A. Kitahara, “Solubility Behavior of Water in Nonagueous Solutions of Oil-Soluble Surfactants: Effects of Molecular Structure of Surfactants and Solvents,” J. Colloid Interface Sci., 37(2), 469-475 (1971).
74. A. Kitahara, Adv. Colloid Inter. Sci., 12, 109 (1980).
75. T. A. Hatton, “Surfactant-Based Separation Process,” ch.3., Marcell Dekker, New York (1989).
76. M. Gao, Y. Yang, B. Yang, J. Shen and X. Ai, “Effect of the Surface Chemical Modification on the Optical-Properties of polymer-Stabilized PbS Nanoparticles,” J. Chem. Soc. Faraday Trans., 91, 4121 (1995).
77. A. D. Yoffe, “Low-dimensional Systems: Quantum Size Effects and Electronic Properties of Semiconductor Microcrystallites (Zero-Dimensional Systems) and Some Quasi-two-dimensional Systems,” Adv. Phys., 42(2), 173-266 (1993).
78. M. G. Burt, “The Justification for Applying the Effective-Mass Approximation to Microstructures,” J. Phys. : Condens. Matter., 4, 6651-6690 (1992).
79. L. E. Brus, “Electron-Electron and Electron-hole Interactions in Small Semiconductor Crystallites: The size Dependence of the Lowest Excited Electronic State,” J. Chem. Phys., 80(9), 4403-4409 (1984).
80. Y. Kayanuma, “Quantum-size Effects of Interacting Electrons and Holes in Semiconductor Microcrystals with Spherical Shape,” Phys. Rev. B, 38(14), 9797-9805 (1988).
81. Y. Wang and N. Herron, “Nanometer-sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties,” J. Phys. Chem., 95(2), 525-532 (1991).
82. P. E. Lippens and M. Lannoo, “Calculation of the Band Gap for Small CdS and ZnS Crystallites,” Phys. Rev. B, 39(15), 10935-10942 (1989).
83. P. E. Lippens and M. Lannoo, “Comparison Between Calculated and Experimental Values of the Lowest Excited Electronic State of Small CdSe Crystallites,” Phys. Rev. B, 41(9), 6079-6081 (1990).
84. M. V. R. Krishna and R. A. Friesner, “Exciton Spectra of Semiconductor Clusters,” Phys. Rev. Lett., 67(5), 629-632 (1991).
85. L. W. Wang and A. Zunger, “Pseudopotential Calculations of Nanoscale CdSe Quantum Dots,” Phys. Rev. B, 53(15), 9579-9582 (1996).
86. A. L. Rogach, A. Kornowski, M. Gao, A. Eychmiiler and H. Weller, “Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals,” J. Phys. Chem. B, 103, 3065-3069 (1999).
87. J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders and S. B. Warner, “The Science and Design of Engineering Materials,” McGraw-Hill, USA, (1999).
88. 黃合建, “光敏性硒化鎘奈米微粉之合成與特性研究,” 國立成功大學化學工程學系碩士論文 (2004).
89. 王崇人, “神奇的奈米科學,” 科學發展月刊, 354期, 45-51 (2002).
90. Y. Chen and Z. Rosenzweig, “Luminescent CdSe Quantum Dot Doped Stabilized Micelles,” Nano Lett., 2(11), 1299-1302 (2002).
91. A. P Herrera, O. Resto, J. G Briano and C. Rinaldi, “Synthesis and Agglomeration of Gold Nanoparticles in Reverse Micelles,” Nanotechnology, 16, 618-625 (2005).
92. S. S. Atik and J. K. Thomas, “Transport of Photoproduced Ions in Water in Oil Microemulsions: Movement of Ions from One Water Pool to Another,” J. Am. Chem. Soc., 103, 3543-3550 (1981).
93. L. Xu, K. J. Chen, J. M. Zhu, H. M. Chen, H. B. Huang, J. Xu and X. F. Huang, “Core-Shell Structure and Quantum Effect of CdSe/HgSe/CdSe Quantum Dot Quantum Well,” Superlattices microstruct., 29(1), 67-72 (2001).
94. J. Aldana, Y. A. Wang and Xiaogang Peng, “Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols,” J. Am. Chem. Soc., 123, 8844-8850 (2001).
95. C. L. Kitchens, M. C. Mcleod and C. B. Roberts, “Solvent Effects on the Growth and Steric Stabilization of Copper Metallic Nanoparticles in AOT Reverse Micelle Systems,” J. Phys. Chem. B, 107, 11331-11338 (2003).