簡易檢索 / 詳目顯示

研究生: 劉信佑
Liu, Hsin-Yu
論文名稱: 新穎綠光微米發光二極體磊晶技術
Novel Green Micro-LEDs Epitaxy Technology
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2026
畢業學年度: 114
語文別: 英文
論文頁數: 109
中文關鍵詞: 綠光微發光二極管磊晶結構優化V型坑工程量子限制斯塔克效應載流子傳輸內量子效率外量子效率金屬有機化學氣相沉積
外文關鍵詞: Green Micro-LEDs, Epitaxial structure optimization, V-shaped pits engineering, Quantum confinement Stark effect, Carrier transport, Internal quantum efficiency, External quantum efficiency, Metal-organic chemical vapor deposition
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Micro-LEDs顯示技術因其自發光、高亮度、高能效等優勢被認為是最具前景的下一代顯示技術,但GaN基綠光LEDs長期受制於「綠色間隙」效應導致的效率瓶頸。本論文針對綠光Micro-LEDs從磊晶結構設計與生長條件調控入手,系統地開展了V型坑工程、量子井能帶調控、載流子輸運優化等方面的研究。

    在V型坑勢壘優化方面,本研究創新性地利用勢壘生長過程中氫氣流量(54.5 sccm)的精確調控,通過差異化蝕刻作用將側壁勢壘高度從213.9 meV提升至231.9 meV,同時完全消除小尺寸V型坑,使Micro-LEDs器件峰值外量子效率達到44.8%,相比傳統工藝提升37.8%。在勢壘層材料優化中,通過引入Al₀.₀₂Ga₀.₉₈N勢壘層與V型坑工程的協同作用,成功引導更多電洞經側壁路徑注入深層量子阱,使Micro-LEDs器件峰值外量子效率達到26.24%,相比傳統工藝提升17.8%使效率,其外部亮度衰減比例由40.06%降低至16.73%。針對低電流密度應用特點,提出的去除p-AlGaN電子阻擋層策略使電洞注入勢壘從733 meV降至699 meV,峰值外量子效率達31.5%,峰值電流密度降至0.5 A/cm²,SRH非輻射複合係數降低72%。

    通過系統比較和分析不同優化技術的物理機制、性能提升及應用場景,本研究建立了 Micro-LEDs 的差異化設計框架,為多技術協同優化提供了理論指導。研究成果不僅加深了對V-pits 雙重功能的物理認識,同時還提供了外延結構設計的系統方法,對促進氮化鎵綠光 Micro-LEDs工業應用具有重要的理論價值和實際意義。

    Micro-LEDs display technology is considered to be the most promising next-generation display technology due to its advantages of self-illumination, high brightness, and high energy efficiency. However, GaN-based green LEDs has long been subject to the efficiency bottleneck caused by the "green gap" effect. Aiming at the performance optimization requirements of green Micro-LEDs and systematically carries out the research on V-pits engineering, quantum well bandgap regulation, and carrier transport optimization from the perspective of epitaxial structure design and growth process regulation.

    In terms of the V-pits barrier optimization, this study creatively used the precise control of hydrogen flow rate (54.5 sccm) during the barrier growth process, increased the side-wall barrier height from 213.9 meV to 231.9 meV through differential etching, and completely eliminated the small-size V-pits. The peak external quantum efficiency of the Micro-LEDs device reached 44.8%, which was 37.8% higher than that of the traditional process. In the material optimization of the barrier layer, the synergistic effect of Al₀.₀₂Ga₀.98N barrier layer and the V-shaped pits engineering was introduced, which successfully led more hole to be injected into the deep quantum well through the sidewall quantum well, enhance the peak external quantum efficiency of the Micro-LEDs device to 26.24%, which was 17.8% higher than that of the conventional one, and also reducing the efficiency droop ratio from 40.06% to 16.73%. For the application characteristics of low current density, the proposed strategy of removing the p-AlGaN electron blocking layer reduces the hole injection barrier from 733 meV to 699 meV, the peak external quantum efficiency reaches 31.5%, the peak current density is reduced to 0.5 A/cm², and the SRH non-radiative recombination coefficient is reduced by 72%.

    By systematically comparing and analyzing the physical mechanism, performance improvement and application scenarios of different optimization techniques, this study establishes a differentiated design framework for Micro-LEDs, which provides theoretical guidance for multi-technology collaborative optimization. The research results not only deepen the physical understanding of the dual function of V-pits, but also provide a systematic methodology for the design of epitaxy structure, which has important theoretical value and practical significance for promoting the industrial application of GaN-based green light Micro-LEDs.

    摘要 I Abstract III Acknowledgement V Contents VI Table Captions X Figure Captions XI Chapter 1 1 Introduction 1 1.1 Research background and significance 1 1.1.1 Development and application prospect of Micro-LEDs 1 1.1.2 Key bottlenecks faced by green Micro-LEDs 2 1.1.3 Academic value and application significance of this study 3 1.2 Review of research status at home and abroad 4 1.2.1 Optimization of carrier recombination in active region 4 1.2.2 Weakening of stress and polarization effect 5 1.2.3 V-shaped pits engineering and its dual functions 6 1.2.4 Optimization of MOCVD growth process 8 1.2.5 Optimization and removal strategy of electron blocking layer 9 1.3 Research objectives and paper structure arrangement 11 1.3.1 Research objectives 11 1.3.2 Paper structure arrangement 12 Chapter 2 14 Theoretical basis and technical background 14 2.1 InGaN/GaN material system and energy band structure 14 2.1.1 InGaN material characteristics 14 2.1.2 Basic properties of GaN materials 15 2.1.3 InGaN/GaN heterogeneous structure and bandgap arrangement 16 2.2 Polarization effect and quantum confinement Stark effect 17 2.2.1 Spontaneous polarization and piezoelectric polarization 17 2.2.2 Quantum confinement Stark effect and its influence 18 2.2.3 Shielding effect by and band-filling effect by carrier 19 2.3 Carrier transport and recombination mechanism 19 2.3.1 Radiation recombination process 19 2.3.2 Non-radiative recombination mechanism 20 2.3.3 Carrier transport and distribution 21 2.4 Micro-LEDs chip characteristics 22 2.4.1 Size effect 22 2.4.2 Characteristics of operating current density 23 2.4.3 Current spreading and thermal management 23 2.5 Summary 24 Chapter 3 25 Quantum barrier optimization based on hydrogen flow regulation 25 3.1 Research ideas and background 25 3.2 Mechanism of hydrogen in the growth of MQWs 26 3.3 Influence of V-pits side wall potential barrier on dislocation and non-radiative recombination 29 3.4 Experimental design and method 32 3.5 Experimental results and analysis 35 3.5.1 Influence of hydrogen flow rate on epitaxy by LTPL 35 3.5.2 Precise control of the potential barrier height of the side wall of v -pits by CL measurement 38 3.5.3 Comprehensive characterization of optoelectronic performance of green u-LEDs 42 3.6 Summary 47 Chapter 4 49 Optimization of AlGaN barrier and V-pits engineering 49 4.1 Research ideas and background 49 4.2 Mechanism of action of AlGaN barrier on carrier transport 50 4.3 Effect of V-pits ratio on efficiency droop 51 4.4 Experimental results and analysis 56 4.4.1 Systematic comparison of photoelectric performance 56 4.4.2 In-depth analysis of carrier recombination mechanism by LTPL 58 4.4.3 Device reliability and thermal management performance 59 4.5 Summary 60 Chapter 5 62 Removal of p-AlGaN electron blocking layer (EBL) for low current density applications 62 5.1 Research Ideas and Background 62 5.2 Theoretical analysis of EBL removal 63 5.2.1 Evolution mechanism of energy band structure from simulation 63 5.2.2 The physical mechanism of the weakening of polarization effect 65 5.3 Experimental design and methods 66 5.3.1 Sample structure design and epitaxy preparation 66 5.3.2 Comprehensive characterization test method 67 5.4 Experimental Results and Analysis 68 5.4.1 I-V Curve analysis of EQE-J characteristics 68 5.4.2 ABC model from EQE curve fitting 69 5.4.3 Emission wavelength under different current density 71 5.4.4 Comprehensive evaluation of crystal quality by Raman and RSM 72 5.4.5 Surface temperature distribution performance analysis 73 5.5 Summary 75 Chapter 6 77 6.1 Conclusion 77 6.2 Future research directions 82 References 83

    [1] Chen H W, Lin B Y, Lee C C, et al. Progress of Micro-LEDs technology for display applications [J]. Applied Sciences, 2018, 8(9): 1557.
    [2] Schubert E F, Kim J K. Solid-state light sources getting smart [J]. Science, 2005, 308(5726): 1274-1278.
    [3] Lin R, Liu X, Zhou G, et al. InGaN Micro-LEDs array enabled advanced underwater wireless optical communication and underwater charging [J]. Advanced Optical Materials, 2021, 9(12): 2002211.
    [4] Wu T, Sher C W, Lin Y, et al. Mini-LEDs and Micro-LEDs: Promising candidates for the next generation display technology [J]. Applied Sciences, 2018, 8(9): 1557.
    [5] Research and Markets. Global Micro-LEDs market report 2019-2025 [R]. Dublin: Research and Markets, 2019.
    [6] TrendForce. Micro LED display market outlook and technology trends report [R]. Taipei: TrendForce, 2023.
    [7] Q-Pixel. Q-Pixel announces world's first 5000 PPI full-color Micro-LEDs display [EB/OL]. https://www.q-pixel.com, 2023-05-15.
    [8] Ploch N L, Knauer A, Zeimer U, et al. The "green gap" problem in InGaN-based light-emitting diodes [J]. Proceedings of SPIE, 2017, 10104: 101041E.
    [9] Ashby C I H, Mitchell C C, Han J, et al. Low-dislocation-density GaN from a single growth on a textured substrate [J]. Applied Physics Letters, 2000, 77(20): 3233-3235.
    [10] Cho J, Schubert E F, Kim J K. Efficiency droop in light-emitting diodes: Challenges and countermeasures [J]. Laser & Photonics Reviews, 2013, 7(3): 408-421.
    [11] Monemar B, Sernelius B E. Defect related issues in the "green gap" of III-nitride light emitters [J]. Applied Physics Letters, 2009, 91(18): 181103.
    [12] Huang Y, Tan G, Gou F, et al. Prospects and challenges of Mini-LEDs and Micro-LEDs displays [J]. Journal of the Society for Information Display, 2019, 27(7): 387-401.
    [13] Wong M S, Hwang D, Lee C, et al. High efficiency Micro-LEDs by sidewall passivation [J]. Physica Status Solidi A, 2017, 214(10): 1600914.
    [14] Xu F F, Tao T, Liu B, et al. High-performance semi-polar InGaN/GaN green micro light-emitting diodes [J]. IEEE Photonics Journal, 2020, 12(1): 1-7.
    [15] Konoplev S S, Bulashevich K A, Karpov S Y. From large-size to Micro-LEDs: Scaling trends revealed by modeling [J]. Physica Status Solidi A, 2018, 215(10): 1700508.
    [16] Hu F, Chen S, Li G, et al. Si-substrate LEDs with multiple superlattice interlayers for beyond 24 gbps visible light communication [J]. Photonics Research, 2021, 9(8): 1581-1591.
    [17] Xu F F, Wang G B, Tao T, et al. Optimized InGaN/GaN quantum structure for high-efficiency Micro-LEDs displays with low current injection [J]. IEEE Transactions on Electron Devices, 2023, 70(8): 4257-4263.
    [18] Zhang C, Wu Y, Xia B, et al. Improvement in quantum efficiency of green GaN-based Micro-LEDs by trapezoidal quantum well [J]. Journal of Luminescence, 2023, 263: 120027.
    [19] Saito S, Kawashima T, et al. Carrier distribution in InGaN quantum wells with varied thickness [J]. Japanese Journal of Applied Physics, 2015, 54(4): 041002.
    [20] Liu W, Zhao D G, et al. Influence of graded InGaN QWs on the optical properties of green LEDs [J]. Journal of Crystal Growth, 2017, 478: 24-28.
    [21] Qi Y D, Liang H, Tang W, et al. Dual wavelength InGaN/GaN multi-quantum well LEDs grown by metalorganic vapor phase epitaxy [J]. Journal of Crystal Growth, 2004, 272(1-4): 333-340.
    [22] Qi W J, Zhang J L, Mo C L, et al. Effects of thickness ratio of InGaN to GaN in superlattice strain relief layer on the optoelectrical properties of InGaN-based green LEDs grown on Si substrates [J]. Journal of Applied Physics, 2017, 122(8): 084504.
    [23] Lai S Q, Lai C, Li S J, et al. Green InGaN/GaN multiple-quantum-wells with pre-layer for high-efficiency Mini-LEDs [J]. IEEE Electron Device Letters, 2023, 44(6): 907-910.
    [24] Rhode S L, Fu W Y, Moram M A, et al. Structure and strain relaxation effects of defects in InxGa1-xN epilayers [J]. Journal of Applied Physics, 2014, 116(10): 103513.
    [25] Won D, Weng X, Redwing J M. Effect of indium surfactant on stress relaxation by V-defect formation in GaN epilayers grown by metalorganic chemical vapor deposition [J]. Journal of Applied Physics, 2010, 108(9): 093511.
    [26] Hangleiter A, Hitzel F, Netzel C, et al. Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency [J]. Physical Review Letters, 2005, 95(12): 127402.
    [27] Quan Z J, Wang L, Zheng C D, et al. Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes [J]. Journal of Applied Physics, 2014, 116(18): 183107.
    [28] Wu X M, Liu J L, Quan Z J, et al. Electroluminescence from the sidewall quantum wells in the V-shaped pits of InGaN light emitting diodes [J]. Applied Physics Letters, 2014, 104(22): 221101.
    [29] Zhang J, Wang X, Liu J, et al. Study on carrier transportation in InGaN based green LEDs with V-pits structure in the active region [J]. Optical Materials, 2018, 86: 46-50.
    [30] Xu C, Zheng C, Wu X, et al. Effects of V-pits covering layer position on the optoelectronic performance of InGaN green LEDs [J]. Journal of Semiconductors, 2019, 40(5): 052801.
    [31] Mo C L, Liao F, Wang X L, et al. Effect of low-temperature GaN cap layer thickness on the optoelectronic performance of InGaN green LEDs with V-shape pits [J]. Semiconductor Science and Technology, 2019, 35(1): 015005.
    [32] Okada N, Kashihara H, Sugimoto K, et al. Controlling potential barrier height by changing V-shaped pits size and the effect on optical and electrical properties for InGaN/GaN based light-emitting diodes [J]. Journal of Applied Physics, 2015, 117(2): 025708.
    [33] Zhou S J, Liu X T. Effect of V-pits embedded InGaN/GaN superlattices on optical and electrical properties of GaN-based green light-emitting diodes [J]. Physica Status Solidi A, 2017, 214(5): 1600782.
    [34] Li C K, Wu C K, Hsu C C, et al. 3D numerical modeling of the carrier transport and radiative efficiency for InGaN/GaN light emitting diodes with V-shaped pits [J]. AIP Advances, 2016, 6(5): 055208.
    [35] Kim J, Kim J, Tak Y, et al. Effect of V-shaped pits size on the reverse leakage current of InGaN/GaN light-emitting diodes [J]. IEEE Electron Device Letters, 2013, 34(11): 1409-1411.
    [36] Sheen M H, Kim S D, Lee J H, et al. V-pits as barriers to diffusion of carrier in InGaN/GaN quantum wells [J]. Journal of Electronic Materials, 2015, 44(11): 4134-4138.
    [37] Ren P, Zhang N, Xue B, et al. A novel usage of hydrogen treatment to improve the indium incorporation and internal quantum efficiency of green InGaN/GaN multiple quantum wells simultaneously [J]. Journal of Physics D: Applied Physics, 2016, 49(17): 175101.
    [38] Czernecki R, Grzanka E, Smalc-Koziorowska J, et al. Effect of hydrogen during growth of quantum barriers on the properties of InGaN quantum wells [J]. Journal of Crystal Growth, 2015, 414: 38-41.
    [39] Morishita Y, Nomura Y, Goto S, et al. Effect of hydrogen on the surface-diffusion length of Ga adatoms during molecular-beam epitaxy [J]. Applied Physics Letters, 1995, 67(17): 2500-2502.
    [40] Czernecki R, Kret S, Kempisty P, et al. Influence of hydrogen and TMIn on indium incorporation in MOVPE growth of InGaN layers [J]. Journal of Crystal Growth, 2014, 402: 330-336.
    [41] Zhou X R, Lu T P, Zhu Y D, et al. Surface morphology evolution mechanisms of InGaN/GaN multiple quantum wells with mixture N2/H2-grown GaN barrier [J]. Nanoscale Research Letters, 2017, 12(1): 354.
    [42] Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes [J]. Applied Physics Letters, 1994, 64(13): 1687-1689.
    [43] Kuo Y K, Chang J Y, Tsai M C. Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer [J]. Optics Letters, 2010, 35(19): 3285-3287.
    [44] Tzou A J, Lin D W, Yu C R, et al. High-performance InGaN-based green light-emitting diodes with quaternary InAlGaN/GaN superlattice electron blocking layer [J]. Optics Express, 2016, 24(11): 11387-11395.
    [45] Yu C T, Lai W C, Yen C H, et al. Effects of InGaN layer thickness of AlGaN/InGaN superlattice electron blocking layer on the overall efficiency and efficiency droops of GaN-based light emitting diodes [J]. Optics Express, 2014, 22(S3): A663-A670.
    [46] Mondal R K, Chatterjee V, Prasad S, et al. Suppression of efficiency droop in AlGaN based deep UV LEDs using double side graded electron blocking layer [J]. Semiconductor Science and Technology, 2020, 35(5): 055031.
    [47] Chu C S, Tian K K, Che J M, et al. On the origin of enhanced hole injection for AlGaN-based deep ultraviolet light-emitting diodes with AlN insertion layer in p-electron blocking layer [J]. Optics Express, 2019, 27(12): A620-A628.
    [48] Lu S, Li J, Huang K, et al. Designs of InGaN Micro-LEDs structure for improving quantum efficiency at low current density [J]. Nanoscale Research Letters, 2021, 16(1): 99.
    [49] Baek W J, Park J, Shim J, et al. Ultra-low-current driven InGaN blue micro light-emitting diodes for electrically efficient and self-heating relaxed microdisplay [J]. Nature Communications, 2023, 14(1): 1386.
    [50] Ambacher O. Growth and applications of Group III-nitrides [J]. Journal of Physics D: Applied Physics, 1998, 31(20): 2653-2710.
    [51] Chichibu S F, Azuhata T, Sota T, et al. Spontaneous emission of localized excitons in InGaN single and multiquantum well structures [J]. Applied Physics Letters, 1996, 69(27): 4188-4190.
    [52] Monemar B. Fundamental energy gap of GaN from photoluminescence excitation spectra [J]. Physical Review B, 1974, 10(2): 676-681.
    [53] Morkoc H. Handbook of nitride semiconductors and devices [M]. Wiley-VCH, 2008.
    [54] Pearton S J, Zolper J C, Shul R J, et al. GaN: Processing, defects, and devices [J]. Journal of Applied Physics, 1999, 86(1): 1-78.
    [55] Wei S H, Zunger A. Valence band splittings and band offsets of AlN, GaN, and InN [J]. Applied Physics Letters, 1996, 69(18): 2719-2721.
    [56] Waltereit P, Brandt O, Trampert A, et al. Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes [J]. Nature, 2000, 406(6798): 865-868.
    [57] Bernardini F, Fiorentini V, Vanderbilt D. Spontaneous polarization and piezoelectric constants of III-V nitrides [J]. Physical Review B, 1997, 56(16): R10024-R10027.
    [58] Takeuchi T, Sota S, Katsuragawa M, et al. Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells [J]. Japanese Journal of Applied Physics, 1997, 36(4A): L382-L385.
    [59] Miller D A B, Chemla D S, Damen T C, et al. Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect [J]. Physical Review Letters, 1984, 53(22): 2173-2176.
    [60] Cho Y H, Gainer G H, Fischer A J, et al. "S-shaped" temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells [J]. Applied Physics Letters, 1998, 73(10): 1370-1372.
    [61] David A, Grundmann M J, Kaeding J F, et al. Carrier distribution in (0001) InGaN/GaN multiple quantum well light-emitting diodes [J]. Applied Physics Letters, 2008, 92(5): 053502.
    [62] Schubert E F. Light-emitting diodes [M]. 2nd ed. Cambridge University Press, 2006.
    [63] Chichibu S F, Uedono A, Onuma T, et al. Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors [J]. Nature Materials, 2006, 5(10): 810-816.
    [64] Shockley W, Read W T. Statistics of the recombinations of hole and electron [J]. Physical Review, 1952, 87(5): 835-842.
    [65] Hangleiter A, Hitzel F, Netzel C, et al. Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency [J]. Physical Review Letters, 2005, 95(12): 127402.
    [66] Delaney K T, Rinke P, Van de Walle C G. Auger recombination rates in nitrides from first principles [J]. Applied Physics Letters, 2009, 94(19): 191109.
    [67] Iveland J, Martinelli L, Peretti J, et al. Direct measurement of Auger electron emitted from a semiconductor light-emitting diode under electrical injection: Identification of the dominant mechanism for efficiency droop [J]. Physical Review Letters, 2013, 110(17): 177406.
    [68] Piprek J. Efficiency droop in nitride-based light-emitting diodes [J]. physica status solidi (a), 2010, 207(10): 2217-2225.
    [69] Kuo Y K, Chang J Y, Tsai M C. Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer [J]. Optics Letters, 2010, 35(19): 3285-3287.
    [70] Huang Y, Tan G, Gou F, et al. Prospects and challenges of Mini-LEDs and Micro-LEDs displays [J]. Journal of the Society for Information Display, 2019, 27(7): 387-401.
    [71] Konoplev S S, Bulashevich K A, Karpov S Y. From large-size to Micro-LEDs: Scaling trends revealed by modeling [J]. physica status solidi (a), 2018, 215(10): 1700508.
    [72] Wong M S, Hwang D, Alhassan A I, et al. High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition [J]. Optics Express, 2018, 26(16): 21324-21331.
    [73] Olivier F, Tirano S, Dupre L, et al. Influence of size-reduction on the performances of GaN-based Micro-LEDs for display application [J]. Journal of Luminescence, 2017, 191: 112-116.
    [74] Templier F. GaN-based emissive microdisplays: A very promising technology for compact, ultra-high brightness display systems [J]. Journal of the Society for Information Display, 2016, 24(11): 669-675.
    [75] Hwang D, Mughal A, Pynn C D, et al. Sustained high external quantum efficiency in ultrasmall blue III-nitride Micro-LEDs [J]. Applied Physics Express, 2017, 10(3): 032101.
    [76] Guo X, Schubert E F. Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates [J]. Applied Physics Letters, 2001, 78(21): 3337-3339.
    [77] Chang M H, Das D, Varde P V, et al. Light emitting diodes reliability review [J]. Microelectronics Reliability, 2012, 52(5): 762-782.
    [78] Nakamura S, Fasol G, Pearton S J. The blue laser diode: the complete story [M]. Springer Science & Business Media, 2013.
    [79] Hangleiter A, Hitzel F, Netzel C, et al. Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency [J]. Physical Review Letters, 2005, 95(12): 127402.
    [80] Quan Z J, Wang L, Zheng C D, et al. Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes [J]. Journal of Applied Physics, 2014, 116(18): 183107.
    [81] Zhou S J, Liu X T. Effect of V-pits embedded InGaN/GaN superlattices on optical and electrical properties of GaN-based green light-emitting diodes [J]. physica status solidi (a), 2017, 214(5): 1600782.
    [82] Als-Nielsen J, McMorrow D. Elements of modern X-ray physics [M]. John Wiley & Sons, 2011.
    [83] Yu P W, Reynolds D C. Photoluminescence of ZnO [J]. Solid State Communications, 1982, 44(1): 47-50.
    [84] Hitzel F, Klewer G, Lahmann S, et al. Localized high-energy emissions from the vicinity of defects in high-efficiency GaxIn1-xN/GaN quantum wells [J]. Physical Review B, 2005, 72(8): 081309.
    [85] Okada N, Kashihara H, Sugimoto K, et al. Controlling potential barrier height by changing V-shaped pits size and the effect on optical and electrical properties for InGaN/GaN based light-emitting diodes [J]. Journal of Applied Physics, 2015, 117(2): 025708.
    [86] Wu Q F, Cao S, Mo C L, et al. Effects of hydrogen treatment in barrier on the electroluminescence of green InGaN/GaN single-quantum-well light-emitting diodes with V-shaped pits grown on Si substrates [J]. Chinese Physics Letters, 2018, 35(9): 098501.
    [87] Jiang H X, Lin J Y. Hexagonal boron nitride for deep ultraviolet photonic devices [J]. Semiconductor Science and Technology, 2014, 29(8): 084003.
    [88] Huang Y, Hsiang E L, Deng M Y, et al. Mini-LEDs, Micro-LEDs and OLED displays: present status and future perspectives [J]. Light: Science & Applications, 2020, 9(1): 1-16.
    [89] Kim K S, Han D P, Kim H S, et al. Analysis of dominant carrier recombination mechanisms depending on injection current in InGaN green light emitting diodes [J]. Applied Physics Letters, 2014, 104(9): 091110.
    [90] La Grassa M, Meneghini M, De Santi C, et al. Ageing of InGaN-based LEDs: Effects on internal quantum efficiency and role of defects [J]. Microelectronics Reliability, 2015, 55(9-10): 1775-1778.
    [91] Chang C Y, Li H, Shih Y T, et al. Manipulation of nanoscale V-pits to optimize internal quantum efficiency of InGaN multiple quantum wells [J]. Applied Physics Letters, 2015, 106(9): 091104.
    [92] Cho J, Schubert E F, Kim J K. Efficiency droop in light-emitting diodes: Challenges and countermeasures [J]. Laser & Photonics Reviews, 2013, 7(3): 408-421.
    [93] Kim M H, Schubert M F, Dai Q, et al. Origin of efficiency droop in GaN-based light-emitting diodes [J]. Applied Physics Letters, 2007, 91(18): 183507.
    [94] Kuo Y K, Chang J Y, Tsai M C. Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer [J]. Optics Letters, 2010, 35(19): 3285-3287.
    [95] Liu Y, Wei T B, Liang F, et al. Analysis of size dependence and the behavior under ultrahigh current density injection condition of GaN-based Micro-LEDs with pixel size down to 3 µm [J]. Journal of Physics D: Applied Physics, 2022, 55(31): 315107.
    [96] Zhu S, Shan Q, Cai W, et al. Characteristics of GaN-on-Si green Micro-LEDs for wide color gamut display and high-speed visible light communication [J]. ACS Photonics, 2023, 10(1): 92-100.
    [97] Kuo Y K, Chang J Y, Tsai M C, et al. Numerical investigation on the carrier transportation characteristics of InGaN/GaN multiple quantum well light-emitting diodes [J]. IEEE Journal of Quantum Electronics, 2010, 46(8): 1214-1220.
    [98] Pereira S, Correia M R, Pereira E, et al. Strain and composition distributions in Wurtzite InGaN/GaN layers extracted from X-ray reciprocal space mapping [J]. Applied Physics Letters, 2002, 80(21): 3913-3915.
    [99] Goldstein J I, Newbury D E, Michael J R, et al. Scanning electron microscopy and X-ray microanalysis[M]. Springer, 2017.
    [100] Yacobi B G, Holt D B. Cathodoluminescence microscopy of inorganic solids[M]. Springer Science & Business Media, 2013.
    [101] Goldstein J I, Newbury D E, Michael J R, et al. Scanning electron microscopy and X-ray microanalysis[M]. Springer, 2017.
    [102] Als-Nielsen J, McMorrow D. Elements of modern X-ray physics[M]. John Wiley & Sons, 2011.
    [103] Yu P W, Reynolds D C. Photoluminescence of ZnO[J]. Solid State Communications, 1982, 44(1): 47-50.
    [104] Yacobi B G, Holt D B. Cathodoluminescence microscopy of inorganic solids[M]. Springer Science & Business Media, 2013.
    [105] Wang H N, Ji Z W, Qu S, et al. Influence of excitation power and temperature on photoluminescence in InGaN/GaN multiple quantum wells[J]. Optics Express, 2012, 20(4): 3932-3946.
    [106] Hwang J S, Gokarna A, Cho Y-H, et al. Comparative investigation of InGaN quantum well laser diode structures on freestanding GaN and sapphire substrates[J]. Journal of Applied Physics, 2007, 102(1): 013508.
    [107] Wang H N, Ji Z W, Qu S, et al. Influence of excitation power and temperature on photoluminescence in InGaN/GaN multiple quantum wells[J]. Optics Express, 2012, 20(4): 3932-3946.
    [108] Fang Y T, Wang L, Sun Q L, et al. Investigation of temperature-dependent photoluminescence in multi-quantum wells[J]. Scientific Reports, 2015, 5(1): 12718.
    [109] Piner E L, Behbehani M K, El-Masry N A, et al. Impurity dependence on hydrogen and ammonia flow rates in InGaN bulk films[J]. Applied Physics Letters, 1997, 71(14): 2023-2025.
    [110] Zhou S, Liu X, Yan H, et al. The effect of nanometre-scale V-pits on electronic and optical properties and efficiency droop of GaN-based green light-emitting diodes[J]. Scientific Reports, 2018, 8(1): 11053.
    [111] Zhou S, Liu X, Yan H, et al. The effect of nanometre-scale V-pits on electronic and optical properties and efficiency droop of GaN-based green light-emitting diodes[J]. Scientific Reports, 2018, 8(1): 11053.
    [112] Okada N, Kashihara H, Sugimoto K, et al. Controlling potential barrier height by changing V-shaped pit size and the effect on optical and electrical properties for InGaN/GaN based light-emitting diodes[J]. Journal of Applied Physics, 2015, 117(2): 025708.
    [113] Xu F F, Wang G B, Tao T, et al. Optimized InGaN/GaN quantum structure for high-efficiency micro-LEDs displays with low current injection[J]. IEEE Transactions on Electron Devices, 2023, 70(8): 4257-4263.
    [114] Zhuang Z, Iida D, Ohkawa K. Investigation of InGaN-based red/green micro-light-emitting diodes[J]. Optics Letters, 2021, 46(8): 1912-1915.
    [115] Kim K S, Han D P, Kim H S, et al. Analysis of dominant carrier recombination mechanisms depending on injection current in InGaN green light emitting diodes[J]. Applied Physics Letters, 2014, 104(9): 091110.
    [116] Zhang T R, Fang F, Wang X L, et al. Aging mechanism of GaN-based yellow LEDs with V-pits[J]. Chinese Physics B, 2019, 28(6): 067305.
    [117] Chu C S, Tian K K, Che J M, et al. On the origin of enhanced hole injection for AlGaN-based deep ultraviolet light-emitting diodes with AlN insertion layer in p-electron blocking layer[J]. Optics Express, 2019, 27(12): A620-A628.
    [118] Damilano B, Gil B. Yellow–red emission from (Ga,In)N heterostructures[J]. Journal of Physics D: Applied Physics, 2015, 48(40): 403001.
    [119] Nakamura S, Senoh M, Mukai T. Highly p-typed Mg-doped GaN films grown with GaN buffer layers[J]. Japanese Journal of Applied Physics, 1991, 30(10A): L1708-L1711.
    [120] Dai Q, Shan Q F, Wang J, et al. Carrier recombination mechanisms and efficiency droop in GaInN/GaN light-emitting diodes[J]. Applied Physics Letters, 2010, 97(13): 133507.
    [121] Chu C S, Tian K K, Che J M, et al. On the origin of enhanced hole injection for AlGaN-based deep ultraviolet light-emitting diodes with AlN insertion layer in p-electron blocking layer[J]. Optics Express, 2019, 27(12): A620-A628.
    [122] Liu Y, Wei T B, Liang F, et al. Analysis of size dependence and the behavior under ultrahigh current density injection condition of GaN-based micro-LEDs with pixel size down to 3 µm[J]. Journal of Physics D: Applied Physics, 2022, 55(31): 315107.
    [123] Zhu S, Shan Q, Cai W, et al. Characteristics of GaN-on-Si green micro-LED for wide color gamut display and high-speed visible light communication[J]. ACS Photonics, 2023, 10(1): 92-100.
    [124] Lu T, Li S, Zhang K, et al. Improving optoelectronic performance and modulation bandwidth of green µ-LEDs via a compound pre-strained strategy[J]. Optics Letters, 2024, 49(4): 883-886.
    [125] Kuo Y K, Chang J Y, Tsai M C, et al. Numerical investigation on the carrier transportation characteristics of InGaN/GaN multiple quantum well light-emitting diodes[J]. IEEE Journal of Quantum Electronics, 2010, 46(8): 1214-1220.
    [126] Pereira S, Correia M R, Pereira E, et al. Strain and composition distributions in wurtzite InGaN/GaN layers extracted from X-ray reciprocal space mapping[J]. Applied Physics Letters, 2002, 80(21): 3913-3915.
    [127] Lin S-H, Shen S-C, Lu T-C, et al. Thermal behavior of AlGaN-based deep-UV LEDs[J]. Optics Express, 2022, 30(10): 16827-16838.

    QR CODE