簡易檢索 / 詳目顯示

研究生: 郭泓志
Kuo, Hung-Chih
論文名稱: 利用生質廢棄物製備非貴重金屬觸媒應用於氧氣還原反應
Non-noble-metal biochars derived from biowastes for oxygen reduction reaction in fuel cell
指導教授: 劉守恒
Liu, Shou-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 102
中文關鍵詞: 氧氣還原核殼生質廢棄物生物碳微波輔助
外文關鍵詞: ORR, Core-shell, biomass, biochar, microwave-assisted
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 燃料電池是利用氫及氧的化學反應,氧氣則由陰極進入電池,在催化劑作用下,氫質子、氧及電子,發生反應形成水分子。由於燃料電池是經由利用氫及氧的化學反應,產生電流及水,並不會如石化燃料燃燒排放污染物,符合環境友善、潔淨能源等觀念。而燃料電池陰極氧氣還原反應為限制因子,白金觸媒雖然具有良好的催化活性,但受限於觸媒價格昂貴、觸媒毒化等問題。本研究中,我們使用生物質廢物合成非貴重金屬催化劑,並選擇過渡金屬鹽和氫氧化鉀分別作為催化劑和活化劑,碳源經過水熱180°C碳化後,以通過微波800 W進行10分鐘活化石墨化,再以酸洗去鉀離子,並在NH3氣氛下以微波800 W進行摻氮,製備出核殼(core-shell)結構的M-N-C催化劑。相較於木質素,纖維素樣品具較多鐵氮活性位置以及促進質傳的中孔結構,因此有較好的氧氣還原活性(Eonset= -0.05 V)。然而Fe/Co比例1:1合金不僅具有優異的活性(Eonset= -0.06 V),同時展現更佳的穩定性,在10000秒的循環測試後,維持原先73%的電流值。以生質廢棄物(甘蔗)作為碳源並以Fe/Co比例1:1合成陰極觸媒,通過測試觸媒展現IV型吸脫附曲線,表明中孔結構的存在,透過電子顯微鏡可以清楚的觀察到核殼結構及合金的形成。結果顯示,其具優異的ORR催化活性(Eonset = -0.06 V)及近四電子傳輸,並且能抵抗甲醇的毒化。此外,我們通過微波加熱系統提供一個快速且節能的方法來合成M-N-C觸媒。

    Fuel cell is a device converting the chemical energy into electricity through an electrochemical reaction. At the cathode, the hydrogen ions, electrons, and oxygen are reacted and produced water. Compared to fossil fuels, the fuel cell only produce electricity and water without the emission of pollutants, so the fuel cell meets the concepts of environmental friendliness and clean energy. However, the sluggish kinetics of the cathodic oxygen reduction reaction and the high cost, poor durability of noble metal catalysts limit the large-scale commercial applications. In this study, we recover lignocellulose biomass to synthesize non-noble metal catalysts, and choose transition metal and potassium hydroxide as catalysts and activation agents, respectively. The samples after carbonization are activated by 800 W microwave radiation for 10 min. The obtained biochars are washed with 0.5 M HCl to remove K ions. For nitrogen doping, a post-treatment is performed by using microwave radiation with 800 W under NH3 atmosphere. By microwave irradiation, we produced core-shell structured M-N-C catalysts. Compared with lignin, cellulose-derived catalysts display superior ORR catalytic activity (Eonset=-0.05 V) due to more Fe-Nx active sites and mesopore structure which can promote mass transport. Moreover, FeCo alloys with ratio (Fe:Co = 1:1) samples not only show a comparable activity but also exhibit a better stability and maintain 73% of current density after 10000s of operation. In terms of biomass waste (sugarcane), the catalysts synthesized by Fe/Co (1:1) encapsulated with N doped carbon layers show a type IV adsorption-desorption isotherm, indicating the existence of mesopores. The formation of core-shell structure of FeCo alloys can be observed as evidenced by TEM. Meanwhile, the SC-Fe5Co5 exhibits excellent ORR catalytic activity (Eonset up to −0.06 V) through four-electron pathways (n≒3.9) in the alkaline electrolyte and excellent resistance to methanol crossover. Moreover, the synthesis process via a microwave-assisted treatment could provide a facile and energy-effective route to construct core-shell structured metal-N-C.

    摘要 I Abstract II Content IV List of Tables VIII List of Figures X Chapter 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Objective 2 Chapter 2 LITERATURE SURVEY 3 2.1 Biochar 3 2.1.1 Cellulose & Lignin & Hemicellulose 3 2.1.2 Carbonization 5 2.1.3 Activation 8 2.1.4 Graphitization 10 2.2 Microwave 11 2.2.1 Mechanism 11 2.2.2 Microwave applications 12 2.3 Oxygen reduction reaction 13 2.3.1 Reaction mechanism 13 2.3.2 Non-precious metal catalyst 15 2.3.3 Heteroatom doped carbon 18 2.4 Fuel cell 20 2.4.1 Fuel cell history 20 2.4.2 Type of fuel cell 21 Chapter 3 EXPERIMENT METHOD 23 3.1 Experimental procedures 23 3.1.1 Chemicals. 24 3.1.2 Synthesis of M-N-C (metal-nitrogen-carbon) 24 3.1.3 Preparation of catalyst film 26 3.2 Characterization and Analysis 26 3.2.1 Transmission Electron Microscope 26 3.2.2 X-ray Diffraction 26 3.2.3 X-ray Photoelectron Spectroscopy 27 3.2.4 Thermogravimetric/ differential thermal analysis 27 3.2.5 BET and BJH 27 3.2.6 Cyclic voltammetry 27 3.2.7 Linear Sweep Voltammetry 28 3.2.8 Rotating ring-disk electrode (RRDE) 28 3.2.9 Element Analysis (EA) 29 3.2.10 X-ray absorption spectroscopy 29 Chapter 4 RESULTS AND DISSCUSSION 30 4.1 Effect of iron amounts on the ORR performance 30 4.1.1 The properties of porous structure in the biochars 30 4.1.2 XRD 36 4.1.3 TEM 38 4.1.4 HR-TEM 41 4.1.5 Cyclic voltammetry (CV) 44 4.1.6 LSV 45 4.1.7 XPS 49 4.1.8 EA 52 4.2 Effect of microwave irradiation time 54 4.2.1 The properties of porous structure in the biochars 54 4.2.2 XRD 57 4.2.3 TEM 58 4.2.4 LSV 60 4.2.5 XPS 62 4.2.6 EA 64 4.3 Effect of alloy 65 4.3.1 The properties of porous structure in the biochars 65 4.3.2 XRD 67 4.3.3 TEM 69 4.3.4 HR-TEM 71 4.3.5 LSV 74 4.3.6 XPS 76 4.3.7 EA 78 4.4 Biomass-derived electrocatalysts. 79 4.4.1 TGA 79 4.4.2 The properties of porous structure in the biochars 80 4.4.3 XRD 82 4.4.4 TEM 83 4.4.5 HR-TEM 84 4.4.6 LSV 87 4.4.7 XPS 89 4.4.8 EA 90 4.4.9 Methanol Tolerance test 91 4.4.10 EIS 92 4.5 XAS 93 Chapter 5 Conclusions 94 參考文獻 95

    Arie, A. A., Kristianto, H., Demir, E., & Cakan, R. D. (2018). Activated porous carbons derived from the Indonesian snake fruit peel as anode materials for sodium ion batteries. Materials Chemistry and Physics, 217, 254-261. doi:10.1016/j.matchemphys.2018.06.076
    Bajpai, R., & Wagner, H. D. (2015). Fast growth of carbon nanotubes using a microwave oven. Carbon, 82, 327-336. doi:10.1016/j.carbon.2014.10.077
    Bera, B., Kar, T., Chakraborty, A., & Neergat, M. (2017). Influence of nitrogen-doping in carbon on equivalent distributed resistance and capacitance Implications to electrocatalysis of oxygen reduction reaction. Journal of Electroanalytical Chemistry, 805, 184-192. doi:10.1016/j.jelechem.2017.10.025
    Borghei, M., Kanninen, P., Lundahl, M., Susi, T., Sainio, J., Anoshkin, I., Ruiz, V. (2014). High oxygen reduction activity of few-walled carbon nanotubes with low nitrogen content. Applied Catalysis B-Environmental, 158, 233-241. doi:10.1016/j.apcatb.2014.04.027
    Borghei, M., Laocharoen, N., Kibena-Poldsepp, E., Johansson, L. S., Campbell, J., Kauppinen, E., Rojas, O. J. (2017). Porous N,P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: Alternative to Pt-C for alkaline fuel cells. Applied Catalysis B-Environmental, 204, 394-402. doi:10.1016/j.apcatb.2016.11.029
    Borghei, M., Lehtonen, J., Liu, L., & Rojas, O. J. (2018). Advanced Biomass-Derived Electrocatalysts for the Oxygen Reduction Reaction. Advanced Materials, 30(24), 27. doi:10.1002/adma.201703691
    Cagnon, B., Py, X., Guillot, A., Stoeckli, F., & Chambat, G. (2009). Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresour Technol, 100(1), 292-298. doi:10.1016/j.biortech.2008.06.009
    Cao, L. M., Lin, Z. P., Huang, J. L., Yu, X., Wu, X. X., Zhang, B. D., Meng, H. (2017). Nitrogen doped amorphous carbon as metal free electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 42(2), 876-885. doi:10.1016/j.ijhydene.2016.11.108
    Cha, J. S., Park, S. H., Jung, S. C., Ryu, C., Jeon, J. K., Shin, M. C., & Park, Y. K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1-15. doi:10.1016/j.jiec.2016.06.002
    Chithra, A., Wilson, P., Rajeev, R., & Prabhakaran, K. (2018). Nitrogen-doped microporous carbon with high CO2 sorption by KOH activation of black gram. Materials Research Express, 5(11), 115606. doi:10.1088/2053-1591/aade26
    Cong, H. P., Wang, P., Gong, M., & Yu, S. H. (2014). Facile synthesis of mesoporous nitrogen-doped graphene: An efficient methanol-tolerant cathodic catalyst for oxygen reduction reaction. Nano Energy, 3, 55-63. doi:10.1016/j.nanoen.2013.10.010
    Correa, C. R., Otto, T., & Kruse, A. (2017). Influence of the biomass components on the pore formation of activated carbon. Biomass & Bioenergy, 97, 53-64. doi:10.1016/j.biombioe.2016.12.017
    Cychosz, K. A., Guillet-Nicolas, R., Garcia-Martinez, J., & Thommes, M. (2017). Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chem Soc Rev, 46(2), 389-414. doi:10.1039/c6cs00391e
    Daems, N., Sheng, X., Vankelecom, I. F. J., & Pescarmona, P. P. (2014). Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2(12), 4085-4110. doi:10.1039/c3ta14043a
    Danish, M., & Ahmad, T. (2018). A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renewable & Sustainable Energy Reviews, 87, 1-21. doi:10.1016/j.rser.2018.02.003
    Deng, J., Xiong, T., Wang, H., Zheng, A., & Wang, Y. (2016). Effects of Cellulose, Hemicellulose, and Lignin on the Structure and Morphology of Porous Carbons. ACS Sustainable Chemistry & Engineering, 4(7), 3750-3756. doi:10.1021/acssuschemeng.6b00388
    Deng, W. Q., Xu, X., & Goddard, W. A. (2004). A two-stage mechanism of bimetallic catalyzed growth of single-walled carbon nanotubes. Nano Letters, 4(12), 2331-2335. doi:10.1021/nl048663s
    Gao, Y., Yue, Q., Gao, B., Sun, Y., Wang, W., Li, Q., & Wang, Y. (2013). Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni(II) adsorption. Chemical Engineering Journal, 217, 345-353. doi:10.1016/j.cej.2012.09.038
    Giudicianni, P., Cardone, G., & Ragucci, R. (2013). Cellulose, hemicellulose and lignin slow steam pyrolysis: Thermal decomposition of biomass components mixtures. Journal of Analytical and Applied Pyrolysis, 100, 213-222. doi:10.1016/j.jaap.2012.12.026
    Gong, Y., Li, D., Luo, C., Fu, Q., & Pan, C. (2017). Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chemistry, 19(17), 4132-4140. doi:10.1039/c7gc01681f
    Gupta, S., Fierro, C., & Yeager, E. (1991). The effects of cyanide on the electrochemical properties of transition-metal macrocycles for oxygen reduction in alkaline-solutions. Journal of Electroanalytical Chemistry, 306(1-2), 239-250. doi:10.1016/0022-0728(91)85233-f
    Gutierrez-Pardo, A., Ramirez-Rico, J., Cabezas-Rodriguez, R., & Martinez-Fernandez, J. (2015). Effect of catalytic graphitization on the electrochemical behavior of wood derived carbons for use in supercapacitors. Journal of Power Sources, 278, 18-26. doi:10.1016/j.jpowsour.2014.12.030
    Jagtoyen, M., & Derbyshire, F. (1998). Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon, 36(7-8), 1085-1097. doi:10.1016/s0008-6223(98)00082-7
    Jaouen, F., Herranz, J., Lefevre, M., Dodelet, J. P., Kramm, U. I., Herrmann, I., . . . Ustinov, E. A. (2009). Cross-Laboratory Experimental Study of Non-Noble-Metal Electrocatalysts for the Oxygen Reduction Reaction. Acs Applied Materials & Interfaces, 1(8), 1623-1639. doi:10.1021/am900219g
    Kambo, H. S., & Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45, 359-378. doi:10.1016/j.rser.2015.01.050
    Khezami, L., Chetouani, A., Taouk, B., & Capart, R. (2005). Production and characterisation of activated carbon from wood components in powder: Cellulose, lignin, xylan. Powder Technology, 157(1-3), 48-56. doi:10.1016/j.powtec.2005.05.009
    Kim, T., Jo, C., Lim, W.-G., Lee, J., Lee, J., & Lee, K.-H. (2016). Facile conversion of activated carbon to battery anode material using microwave graphitization. Carbon, 104, 106-111. doi:10.1016/j.carbon.2016.03.021
    Kumar, M., Oyedun, A. O., & Kumar, A. (2018). A review on the current status of various hydrothermal technologies on biomass feedstock. Renewable & Sustainable Energy Reviews, 81, 1742-1770. doi:10.1016/j.rser.2017.05.270
    Lee, Y., Eum, P. R. B., Ryu, C., Park, Y. K., Jung, J. H., & Hyun, S. (2013). Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1. Bioresource Technology, 130, 345-350. doi:10.1016/j.biortech.2012.12.012
    Li, J. K., Ghoshal, S., Liang, W. T., Sougrati, M. T., Jaouen, F., Halevi, B., Jia, Q. Y. (2016). Structural and mechanistic basis for the high activity of Fe-N-C catalysts toward oxygen reduction. Energy & Environmental Science, 9(7), 2418-2432. doi:10.1039/c6ee01160h
    Li, M., Liu, T. T., Fan, L. Q., Bo, X. J., & Guo, L. P. (2016). Three-dimensional hierarchical meso/macroporous Fe/Co-nitrogen-doped carbon encapsulated FeCo alloy nanoparticles prepared without any template or surfactant: High-performance bifunctional oxygen electrodes. Journal of Alloys and Compounds, 686, 467-478. doi:10.1016/j.jallcom.2016.06.060
    Li, W. M., Wu, J., Higgins, D. C., Choi, J. Y., & Chen, Z. W. (2012). Determination of Iron Active Sites in Pyrolyzed Iron-Based Catalysts for the Oxygen Reduction Reaction. Acs Catalysis, 2(12), 2761-2768. doi:10.1021/cs300579b
    Luo, N., Li, X., Wang, X., Yan, H., Zhang, C., & Wang, H. (2010). Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method. Carbon, 48(13), 3858-3863. doi:10.1016/j.carbon.2010.06.051
    Maneerung, T., Liew, J., Dai, Y. J., Kawi, S., Chong, C., & Wang, C. H. (2016). Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies. Bioresource Technology, 200, 350-359. doi:10.1016/j.biortech.2015.10.047
    Menéndez, J. A., Arenillas, A., Fidalgo, B., Fernández, Y., Zubizarreta, L., Calvo, E. G., & Bermúdez, J. M. (2010). Microwave heating processes involving carbon materials. Fuel Processing Technology, 91(1), 1-8. doi:10.1016/j.fuproc.2009.08.021
    Nagaiah, T. C., Kundu, S., Bron, M., Muhler, M., & Schuhmann, W. (2010). Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium. Electrochemistry Communications, 12(3), 338-341. doi:10.1016/j.elecom.2009.12.021
    Nahil, M. A., & Williams, P. T. (2012). Pore characteristics of activated carbons from the phosphoric acid chemical activation of cotton stalks. Biomass and Bioenergy, 37, 142-149. doi:10.1016/j.biombioe.2011.12.019
    Neeli, S. T., & Ramsurn, H. (2018). Synthesis and formation mechanism of iron nanoparticles in graphitized carbon matrices using biochar from biomass model compounds as a support. Carbon, 134, 480-490. doi:10.1016/j.carbon.2018.03.079
    Oliveira, L. C. A., Pereira, E., Guimaraes, I. R., Vallone, A., Pereira, M., Mesquita, J. P., & Sapag, K. (2009). Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents. Journal of Hazardous Materials, 165(1-3), 87-94. doi:10.1016/j.jhazmat.2008.09.064
    Sarapuu, A., Kibena-Põldsepp, E., Borghei, M., & Tammeveski, K. (2018). Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal–nitrogen–carbon catalysts for alkaline membrane fuel cells. Journal of Materials Chemistry A, 6(3), 776-804. doi:10.1039/c7ta08690c
    Shang, Z. X., Chen, Z. L., Zhang, Z. B., Yu, J., Tan, S. Z., Ciucci, F., Chen, D. J. (2018). CoFe nanoalloy particles encapsulated in nitrogen-doped carbon layers as bifunctional oxygen catalyst derived from a Prussian blue analogue. Journal of Alloys and Compounds, 740, 743-753. doi:10.1016/j.jallcom.2018.01.019
    Sharaf, O. Z., & Orhan, M. F. (2014). An overview of fuel cell technology: Fundamentals and applications. Renewable & Sustainable Energy Reviews, 32, 810-853. doi:10.1016/j.rser.2014.01.012
    Shi, M., Ma, J., Yao, Z., Li, Z., Mi, H., & Xie, Y. (2019). Iron and nitrogen co-doped porous carbon derived from soybean dregs with enhanced catalytic performance for oxygen reduction. Journal of Electroanalytical Chemistry, 839, 141-148. doi:10.1016/j.jelechem.2019.03.020
    Song, M., Jin, B., Xiao, R., Yang, L., Wu, Y., Zhong, Z., & Huang, Y. (2013). The comparison of two activation techniques to prepare activated carbon from corn cob. Biomass and Bioenergy, 48, 250-256. doi:10.1016/j.biombioe.2012.11.007
    Strickland, K., Elise, M. W., Jia, Q. Y., Tylus, U., Ramaswamy, N., Liang, W. T., . . . Mukerjee, S. (2015). Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination. Nature Communications, 6, 8. doi:10.1038/ncomms8343
    Suntivich, J., Gasteiger, H. A., Yabuuchi, N., Nakanishi, H., Goodenough, J. B., & Shao-Horn, Y. (2011). Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nature Chemistry, 3(7), 546-550. doi:10.1038/nchem.1069
    Taniguchi, M., Yoshie, R., Akikubo, K., Tateno, A., Hotozuka, K., Kawaguchi, N., . . . Tachibana, M. (2019). Effect of nitrogen and iron in carbon nanowalls on oxygen reduction reaction. Electrochimica Acta, 306, 132-142. doi:10.1016/j.electacta.2019.03.088
    Vinod Selvaganesh, S., Selvarani, G., Sridhar, P., Pitchumani, S., & Shukla, A. K. (2011). Graphitic Carbon as Durable Cathode-Catalyst Support for PEFCs. Fuel Cells, 11(3), 372-384. doi:10.1002/fuce.201000151
    Vivekanandhan, S., Schreiber, M., Muthuramkumar, S., Misra, M., & Mohanty, A. K. (2017). Carbon nanotubes from renewable feedstocks: A move toward sustainable nanofabrication. Journal of Applied Polymer Science, 134(4). doi:10.1002/app.44255
    Wang, J., & Ciucci, F. (2017). Boosting Bifunctional Oxygen Electrolysis for N-Doped Carbon via Bimetal Addition. Small, 13(16), 15. doi:10.1002/smll.201604103
    Wang, J. C., & Kaskel, S. (2012). KOH activation of carbon-based materials for energy storage. Journal of Materials Chemistry, 22(45), 23710-23725. doi:10.1039/c2jm34066f
    Wang, X. X., Cullen, D. A., Pan, Y. T., Hwang, S., Wang, M. Y., Feng, Z. X., . . . Wu, G. (2018). Nitrogen-Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells. Advanced Materials, 30(11), 11. doi:10.1002/adma.201706758
    Wang, Y., Chen, W., Chen, Y., Wei, B., Chen, L. H., Peng, L. S., Wei, Z. D. (2018). Carbon-based catalysts by structural manipulation with iron for oxygen reduction reaction. Journal of Materials Chemistry A, 6(18), 8405-8412. doi:10.1039/c8ta02166j
    Wang, Y., Pan, Y., Zhu, L., Yu, H., Duan, B., Wang, R., Qiu, S. (2019). Solvent-free assembly of Co/Fe-containing MOFs derived N-doped mesoporous carbon nanosheets for ORR and HER. Carbon, 146, 671-679. doi:10.1016/j.carbon.2019.02.002
    Wirth, C. T., Bayer, B. C., Gamalski, A. D., Esconjauregui, S., Weatherup, R. S., Ducati, C., Hofmann, S. (2012). The Phase of Iron Catalyst Nanoparticles during Carbon Nanotube Growth. Chemistry of Materials, 24(24), 4633-4640. doi:10.1021/cm301402g
    Wu, D. Y., Zhu, C., Shi, Y. T., Jing, H. Y., Hu, J. W., Song, X. D., Hao, C. (2019). Biomass-Derived Multilayer-Graphene-Encapsulated Cobalt Nanoparticles as Efficient Electrocatalyst for Versatile Renewable Energy Applications. ACS Sustainable Chemistry & Engineering, 7(1), 1137-1145. doi:10.1021/acssuschemeng.8b04797
    Wu, G., More, K. L., Johnston, C. M., & Zelenay, P. (2011). High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt. Science, 332(6028), 443-447. doi:10.1126/science.1200832
    Yahya, M. A., Al-Qodah, Z., & Ngah, C. W. Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable & Sustainable Energy Reviews, 46, 218-235. doi:10.1016/j.rser.2015.02.051
    Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781-1788. doi:10.1016/j.fuel.2006.12.013
    Yang, J., Hu, J. T., Weng, M. Y., Tan, R., Tian, L. L., Yang, J. L., Pan, F. (2017). Fe-Cluster Pushing Electrons to N-Doped Graphitic Layers with Fe3C(Fe) Hybrid Nanostructure to Enhance O-2 Reduction Catalysis of Zn-Air Batteries. Acs Applied Materials & Interfaces, 9(5), 4587-4596. doi:10.1021/acsami.6b13166
    Yang, M. L., Guo, L. P., Hu, G. S., Hu, X., Xu, L. Q., Chen, J., Fan, M. H. (2015). Highly Cost-Effective Nitrogen-Doped Porous Coconut Shell-Based CO2 Sorbent Synthesized by Combining Ammoxidation with KOH Activation. Environmental Science & Technology, 49(11), 7063-7070. doi:10.1021/acs.est.5b01311
    Yang, W., Liu, X., Yue, X., Jia, J., & Guo, S. (2015). Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J Am Chem Soc, 137(4), 1436-1439. doi:10.1021/ja5129132
    Zhang, C. Z., Hao, R., Liao, H. B., & Hou, Y. L. (2013). Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy, 2(1), 88-97. doi:10.1016/j.nanoen.2012.07.021
    Zhang, Q., Wang, J. H., Yu, P. W., Song, F., Yin, X., Chen, R. J., Yang, W. L. (2018). Porous carbon electrocatalyst with exclusive metal-coordinate active sites for acidic oxygen reduction reaction. Carbon, 132, 85-94. doi:10.1016/j.carbon.2018.02.019
    Zhang, X. L., Yu, D. L., Zhang, Y. Q., Guo, W. H., Ma, X. X., & He, X. Q. (2016). Nitrogen- and sulfur-doped carbon nanoplatelets via thermal annealing of alkaline lignin with urea as efficient electrocatalysts for oxygen reduction reaction. Rsc Advances, 6(106), 104183-104192. doi:10.1039/c6ra21958f
    Zhang, Y. J., Lu, L. H., Zhang, S., Lv, Z. Z., Yang, D. T., Liu, J. H., Song, W. G. (2018). Biomass chitosan derived cobalt/nitrogen doped carbon nanotubes for the electrocatalytic oxygen reduction reaction. Journal of Materials Chemistry A, 6(14), 5740-5745. doi:10.1039/c7ta11258k
    Zhao, L., Zhao, X., Burke, L. T., Bennett, J. C., Dunlap, R. A., & Obrovac, M. N. (2017). Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources. ChemSusChem, 10(17), 3409-3418. doi:10.1002/cssc.201701211

    下載圖示 校內:2024-07-09公開
    校外:2024-07-09公開
    QR CODE