| 研究生: |
莊明憲 Chuang, Ming-Hsien |
|---|---|
| 論文名稱: |
鍍製具氫氣電漿處理之非晶矽/矽鍺薄膜串疊太陽能電池於可撓式基板 Deposition a-Si/a-SiGe Tandem Solar Cells With Hydrogen Plasma Treatment On Flexible Substrate |
| 指導教授: |
李欣縈
Lee, Hsin-Ying |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 非晶矽 、氫氣電漿處理 、串疊 、矽鍺 |
| 外文關鍵詞: | H2 plasma passivation, amorphous silicon, flexible, tandem solar cells |
| 相關次數: | 點閱:75 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非晶矽基太陽能電池一般是利用電漿增強式化學氣相沉積系統(Plasma Enhanced Chemical Vapor Deposition, PECVD)進行薄膜沉積,過程中基板溫度必須維持在250 ℃,否則薄膜會產生劣化等相關問題,因此在軟性基板選用上,耐熱溫度可在250 ℃以上是基本要求。聚亞醯胺(Polyimide, PI)可作為軟性基板,具有可耐高溫至320 ℃、抗酸鹼能力佳及易撓曲的特性,因此本研究使用Polyimide作為塑膠軟性基板,並以倒置的n-i-p結構將非晶矽薄膜太陽能電池沉積在Polyimide塑膠軟性基板上,最後鍍製出高效率且可彎曲的串疊太陽能電池。
本研究首先將n-i-p結構太陽能電池成長於玻璃上,由於成長表面的差異性,導致沉積出來的p型非晶矽薄膜品質較差,降低整體太陽能電池轉換效率。因此,本研究利用氫氣電漿處理分別於i/p接面及p/ITO接面做處理,以減少薄膜表面懸鍵並提升後續薄膜沉積的品質。最後鍍製出轉換效率3.27 %之n-i-p結構非晶矽太陽能電池於可撓基板,並有效改善元件之特性。再將最佳化條件轉移至Polyimide塑膠軟性基板上,並與矽鍺電池作串疊,鍍製出效率4.26 %的氫氣電漿處理n-i-p-n-i-p結構非晶矽/矽鍺串疊薄膜太陽能電池於可撓式基板。最後改變不同彎曲次數及曲率半徑,分析不同彎曲條件下對於矽基可撓式薄膜太陽能電池的影響。
關鍵字:非晶矽; 氫氣電漿處理; 串疊; 矽鍺
Amorphous silicon-based Solar cells are generally deposited by plasma enhanced chemical vapor deposition (PECVD) with substrate temperature 250 ℃ during the process. In this study, n-i-p structure was used to fabricate silicon-based solar cells on Polyimide (PI). However, this structure may cause poor quality and numerous surface states in the a-Si films. The H2 plasma passivation is a promising technique to improve the amorphous silicon (a-Si) solar cells. The method enhanced the efficiency of a-Si solar cells from 1.25 % to 4.22 % on glass substrate. In addition, the efficiency of flexible a-Si solar cell deposited on PI was 3.27 %. In order to further enhance the efficiency, the a-SiGe cell with absorption of infrared was combined with a-Si cell as double junction tandem solar cells. The efficiency of a-Si/a-SiGe tandem solar cells with H2 plasma passivation is 6.03 % and 4.26 % on the glass and PI substrate, respectively. Furthermore, the durability of tandem solar cells on PI was analyzed by different degree of bending and bending times.
Key words:H2 plasma passivation, amorphous silicon, flexible, tandem solar cells.
[1] 翁敏航,《太陽能電池―原理、元件、材料、製程與檢測技術》,東華書局股份有限公司。
[2] 戴寶通、鄭晃忠,《太陽能電池技術手冊》,台灣電子材料與元件協會發行出版。
[3] D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett., vol. 31, pp. 292-294, 1977.
[4] Z. Wang, H. Zhu, J. Gao, and F. Guan, “Degradation behavior of hydrogenated amorphous/microcrystalline silicon tandem solar cells,” Phys. Status Solidi A 210, No. 6, pp. 1137-1142, 2013.
[5] T. Matsui, H. Jia, and M. Kondo, “Thin film solar cells incorporating microcrystalline Si1–xGex as efficient infrared absorber:an application to double junction tandem solar cells,” Prog. Photovolt: Res. Appl., vol. 18, pp. 48-53, 2010.
[6] T. Matsui, C. W. Chang, and T. Takada, “Microcrystalline Si1-xGex Solar Cells Exhibiting Enhanced Infrared Response with Reduced Absorber Thickness,” Appl. Phys. Expr., vol. 1, pp. 031501-031503. 2008.
[7] E. L. Badia, “Structural development and mechanical properties of polyethylene naphthalate/polyethylene terephthalate blends during uniaxial drawing,” Polymer, vol. 42, pp. 7299-7305, 2001.
[8] 翁敏航、楊茹媛、管鴻、晁成虎,《太陽能電池原理、元件、材料、製程與檢測技術》,東華書局。
[9] 張勁燕,《半導體製程設備》,五南圖書出版公司。
[10] 莊達人,《VLSI製造技術》,高立圖書有限公司。
[11] C. H. Lee, B. J. Kim, and M. Shin, “H2 plasma treatment at the p/i interface of a hydrogenated amorphous Si absorption layer for high-performance Si thin film solar cells.” Prog. Photovolt: Res. Appl., vol. 22, pp. 362-370, 2014.
[12] H. Asaoka, T. Yamazaki, and H. Yamamoto, “ In situ characterization of the heterointerfaces between SrO films and dangling-bond-terminated Si surfaces”, Thin Solid Films, vol. 508, pp. 175-177, 2006.
[13] Y. Kazuhiro and I. Hiroshi, “XPS study of silicon surface after ultra-low-energy ion implantation”, Surface Science, vol. 600, pp. 3753–3756, 2006.
[14] B. Rech, C. Beneking, and H. Wagner., “Improvement in stabilized efficiency of stabilized efficiency of a-Si:H solar cells through optimized p/i interface layers”, Sol. Energy Mater. Sol. Cells, vol. 41-42, pp. 475-483, 1996.
[15] A. Froitzheim, K. Brendel, L. Elstner, W. Fuhs, K. Kliefoth, and M. Schmidt, “Interface recombination in heterojunctions of amorphousand and crystalline silicon”, J. Non-Cryst. Solids, vol. 299-302, pp. 663-667, 2002.
[16] M. C. Huang, C. H. Chang, and F. M. Li, “The effect of H2 treatment on heterojunction with intrinsic thin layer(HIT) solar cell performance using 40.68MHz VHF-PECVD system” IEEE Photovoltaic Spec. Conf., vol. 11, pp. 003001-003004, 2011.
[17] C. H. Lee, B. J. Kim, and M. Shin, “H2 plasma treatment at the p/i interface of a hydrogenated amorphous Si absorption layer for high-performance Si thin film solar cells” Prog. Photovolt: Res. Appl., vol. 22, pp. 362-370, 2014.
[18] K. S. Lim, M. Konagai, and K. Takahashi, “A novel structure, high conversion efficiency p-SiC/graded p-SiC/i-Si/n-Si/metal substrate-type amorphous silicon solar cell”, J. Appl. Phys., vol. 56, pp. 538-542, 1984.
[19] J. Bu, P. Wang, L. Ai, X. Sang, and Y. Li, “Influence of p/i interface treatment on the flexible thin film solar cells for application in building integrated photovoltaics”, Adv. Mater. Res., vol. 287-290, pp. 1259-1262, 2011.
[20] J. H. Jang and K. S. Lim, “Etching and passivation effects on born-doped amorphous silicon carbide p layer of amorphous silicon solar cell by hydrogen treatment using a mercury-sensitized photochemical vapor deposition method”, Appl. Phys. Lett., vol. 71, pp. 1846-1848, 1997.
[21] W.S. Liao and S.C. Lee, “Water-Resistant Coating on Low Temperature Amorphous Silicon Nitride Films by a Thin Layer of Amorphous Silicon Hydrogen Alloy”, J. Electrochem. Soc., vol. 157, pp. C47-C51, 2010.
[22] D. S. Wuu, T. N. Chen, and C. H. Liu, “Transparent Barrier Coatings on High Temperature Resisting Polymer Substrates for Flexible Electronic Applications”, J. Electrochem. Soc., vol. 157, pp. 1477-1481, 1997.
[23] C. Guarneros, B. Rebollo-Plata, and R. Lozada-Morales, “Forbidden energy band gap in diluted a-Ge1−xSix:N films”, Thin Solid Films, vol. 520 , pp. 5463-5465, 2012.
[24] M. Takuya and K. Michio, “Influence of alloy composition on carrier transport and solar cell properties of hydrogenated microcrystalline silicon-germanium thin films”, Appl. Phys. Lett. vol. 89, pp. 142113-142115, 2006.
[25] L. Duan, S. Liu, and D. Zhang, “Improved flexibility of flexible organic light-emitting devices by using a metal/organic multilayer cathode”, J. J. Phys. D: Appl. Phys., vol. 42, pp. 075103-075106, 2009.
[26] L. Ke and R. S. Kumar, “Degradation study in flexible substrate organic light-emitting diodes”, Appl. Phys. A, vol. 81, pp. 969-974, 2005.