簡易檢索 / 詳目顯示

研究生: 莊明憲
Chuang, Ming-Hsien
論文名稱: 鍍製具氫氣電漿處理之非晶矽/矽鍺薄膜串疊太陽能電池於可撓式基板
Deposition a-Si/a-SiGe Tandem Solar Cells With Hydrogen Plasma Treatment On Flexible Substrate
指導教授: 李欣縈
Lee, Hsin-Ying
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 73
中文關鍵詞: 非晶矽氫氣電漿處理串疊矽鍺
外文關鍵詞: H2 plasma passivation, amorphous silicon, flexible, tandem solar cells
相關次數: 點閱:75下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非晶矽基太陽能電池一般是利用電漿增強式化學氣相沉積系統(Plasma Enhanced Chemical Vapor Deposition, PECVD)進行薄膜沉積,過程中基板溫度必須維持在250 ℃,否則薄膜會產生劣化等相關問題,因此在軟性基板選用上,耐熱溫度可在250 ℃以上是基本要求。聚亞醯胺(Polyimide, PI)可作為軟性基板,具有可耐高溫至320 ℃、抗酸鹼能力佳及易撓曲的特性,因此本研究使用Polyimide作為塑膠軟性基板,並以倒置的n-i-p結構將非晶矽薄膜太陽能電池沉積在Polyimide塑膠軟性基板上,最後鍍製出高效率且可彎曲的串疊太陽能電池。
    本研究首先將n-i-p結構太陽能電池成長於玻璃上,由於成長表面的差異性,導致沉積出來的p型非晶矽薄膜品質較差,降低整體太陽能電池轉換效率。因此,本研究利用氫氣電漿處理分別於i/p接面及p/ITO接面做處理,以減少薄膜表面懸鍵並提升後續薄膜沉積的品質。最後鍍製出轉換效率3.27 %之n-i-p結構非晶矽太陽能電池於可撓基板,並有效改善元件之特性。再將最佳化條件轉移至Polyimide塑膠軟性基板上,並與矽鍺電池作串疊,鍍製出效率4.26 %的氫氣電漿處理n-i-p-n-i-p結構非晶矽/矽鍺串疊薄膜太陽能電池於可撓式基板。最後改變不同彎曲次數及曲率半徑,分析不同彎曲條件下對於矽基可撓式薄膜太陽能電池的影響。

    關鍵字:非晶矽; 氫氣電漿處理; 串疊; 矽鍺

    Amorphous silicon-based Solar cells are generally deposited by plasma enhanced chemical vapor deposition (PECVD) with substrate temperature 250 ℃ during the process. In this study, n-i-p structure was used to fabricate silicon-based solar cells on Polyimide (PI). However, this structure may cause poor quality and numerous surface states in the a-Si films. The H2 plasma passivation is a promising technique to improve the amorphous silicon (a-Si) solar cells. The method enhanced the efficiency of a-Si solar cells from 1.25 % to 4.22 % on glass substrate. In addition, the efficiency of flexible a-Si solar cell deposited on PI was 3.27 %. In order to further enhance the efficiency, the a-SiGe cell with absorption of infrared was combined with a-Si cell as double junction tandem solar cells. The efficiency of a-Si/a-SiGe tandem solar cells with H2 plasma passivation is 6.03 % and 4.26 % on the glass and PI substrate, respectively. Furthermore, the durability of tandem solar cells on PI was analyzed by different degree of bending and bending times.

    Key words:H2 plasma passivation, amorphous silicon, flexible, tandem solar cells.

    摘要 Ⅰ Deposition a-Si/a-SiGe Tandem Solar Cells With Hydrogen Plasma Treatment On Flexible Substrate Ⅲ 誌謝 Ⅶ 表目錄 ⅩⅣ 圖目錄 ⅩⅥ 第一章 序論 1 1.1前言 1 1.2研究動機 2 參考文獻 5 第二章 實驗原理簡介 8 2.1太陽能電池工作原理 8 2.1.1 光電基本轉換原理 8 2.1.2 內建電場 8 2.1.3 開路電壓、短路電流及填充因子 9 2.1.4 轉換效率 10 2.1.5 漏電流及串、並聯電阻 11 2.2 光電特性量測系統原理 12 2.2.1 霍爾效應量測系統 12 2.2.2 傅立葉轉換紅外線光譜分析儀 12 2.2.3 拉曼光譜分析儀 14 2.2.4 轉換效率量測系統 15 2.2.5 彎曲度及次數量測系統 15 2.3 矽薄膜沉積系統及沉積方式簡介 16 2.3.1電漿增強式化學氣相沉積系統 16 2.3.2 化學氣相沉積原理 17 2.4 氫氣電漿表面處理 18 參考文獻 20 第三章 元件製作流程 27 3.1 元件製程 27 3.1.1 試片清潔 27 3.1.2 元件結構設計 27 3.1.3 元件製作 27 3.1.4 背部電極層製作 30 3.1.5 矽基薄膜沉積 30 3.1.6 透明導電極層製作 31 第四章 可撓式太陽能電池元件及薄膜特性量測 33 4.1 氫氣電漿處理對於p型非晶矽薄膜及元件之影響分析 33 4.1.1 氫氣電漿處理對於p型非晶矽薄膜之傅立葉轉換紅 外線光譜分析 33 4.1.2 氫氣電漿處理對於p型非晶矽薄膜之拉曼光譜分析 34 4.1.3 氫氣電漿處理對於p型非晶矽薄膜之X射線光電子能譜分析 35 4.1.4 氫氣電漿處理p型非晶矽薄膜對於元件之影響分析 36 4.2 氫氣電漿處理i型薄膜表面對於p型非晶矽薄膜及元件之影響分析 36 4.2.1 氫氣電漿處理i型薄膜表面對於p型非晶矽薄膜之霍爾量測分析 37 4.2.2 氫氣電漿處理i型薄膜表面對於p型非晶矽薄膜之傅立葉轉換紅外線光譜分析 38 4.2.3 氫氣電漿處理i型薄膜表面對於p型非晶矽薄膜之拉曼光譜分析 39 4.2.4 氫氣電漿處理i型薄膜表面對於p型非晶矽薄膜之X射線光電子能譜分析 39 4.2.5 氫氣電漿處理i型薄膜表面對於元件之影響分析 40 4.3 n-i-p結構太陽能電池成長於玻璃及Polyimide基板 41 4.3.1 氫氣電漿處理之n-i-p結構非晶矽太陽能電池成長於玻璃及Polyimide基板 41 4.3.2 氫氣電漿處理之n-i-p結構非晶矽鍺太陽能電池成長於玻璃及Polyimide基板 42 4.3.3 氫氣電漿處理之n-i-p-n-i-p結構矽/矽鍺串疊太陽能電池成長於玻璃及Polyimide基板 43 4.4 氫氣電漿處理n-i-p-n-i-p結構之非晶矽/矽鍺串疊可撓式太陽能電池彎曲量測 44 4.4.1 曲率半徑為0.7公分之不同彎曲次數量測 44 4.4.2 曲率半徑為0.54公分之不同彎曲次數量測 45 參考文獻 46 第五章 結論 71 第六章 未來展望 73

    [1] 翁敏航,《太陽能電池―原理、元件、材料、製程與檢測技術》,東華書局股份有限公司。
    [2] 戴寶通、鄭晃忠,《太陽能電池技術手冊》,台灣電子材料與元件協會發行出版。
    [3] D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett., vol. 31, pp. 292-294, 1977.
    [4] Z. Wang, H. Zhu, J. Gao, and F. Guan, “Degradation behavior of hydrogenated amorphous/microcrystalline silicon tandem solar cells,” Phys. Status Solidi A 210, No. 6, pp. 1137-1142, 2013.
    [5] T. Matsui, H. Jia, and M. Kondo, “Thin film solar cells incorporating microcrystalline Si1–xGex as efficient infrared absorber:an application to double junction tandem solar cells,” Prog. Photovolt: Res. Appl., vol. 18, pp. 48-53, 2010.
    [6] T. Matsui, C. W. Chang, and T. Takada, “Microcrystalline Si1-xGex Solar Cells Exhibiting Enhanced Infrared Response with Reduced Absorber Thickness,” Appl. Phys. Expr., vol. 1, pp. 031501-031503. 2008.
    [7] E. L. Badia, “Structural development and mechanical properties of polyethylene naphthalate/polyethylene terephthalate blends during uniaxial drawing,” Polymer, vol. 42, pp. 7299-7305, 2001.
    [8] 翁敏航、楊茹媛、管鴻、晁成虎,《太陽能電池原理、元件、材料、製程與檢測技術》,東華書局。
    [9] 張勁燕,《半導體製程設備》,五南圖書出版公司。
    [10] 莊達人,《VLSI製造技術》,高立圖書有限公司。
    [11] C. H. Lee, B. J. Kim, and M. Shin, “H2 plasma treatment at the p/i interface of a hydrogenated amorphous Si absorption layer for high-performance Si thin film solar cells.” Prog. Photovolt: Res. Appl., vol. 22, pp. 362-370, 2014.
    [12] H. Asaoka, T. Yamazaki, and H. Yamamoto, “ In situ characterization of the heterointerfaces between SrO films and dangling-bond-terminated Si surfaces”, Thin Solid Films, vol. 508, pp. 175-177, 2006.
    [13] Y. Kazuhiro and I. Hiroshi, “XPS study of silicon surface after ultra-low-energy ion implantation”, Surface Science, vol. 600, pp. 3753–3756, 2006.
    [14] B. Rech, C. Beneking, and H. Wagner., “Improvement in stabilized efficiency of stabilized efficiency of a-Si:H solar cells through optimized p/i interface layers”, Sol. Energy Mater. Sol. Cells, vol. 41-42, pp. 475-483, 1996.
    [15] A. Froitzheim, K. Brendel, L. Elstner, W. Fuhs, K. Kliefoth, and M. Schmidt, “Interface recombination in heterojunctions of amorphousand and crystalline silicon”, J. Non-Cryst. Solids, vol. 299-302, pp. 663-667, 2002.
    [16] M. C. Huang, C. H. Chang, and F. M. Li, “The effect of H2 treatment on heterojunction with intrinsic thin layer(HIT) solar cell performance using 40.68MHz VHF-PECVD system” IEEE Photovoltaic Spec. Conf., vol. 11, pp. 003001-003004, 2011.
    [17] C. H. Lee, B. J. Kim, and M. Shin, “H2 plasma treatment at the p/i interface of a hydrogenated amorphous Si absorption layer for high-performance Si thin film solar cells” Prog. Photovolt: Res. Appl., vol. 22, pp. 362-370, 2014.
    [18] K. S. Lim, M. Konagai, and K. Takahashi, “A novel structure, high conversion efficiency p-SiC/graded p-SiC/i-Si/n-Si/metal substrate-type amorphous silicon solar cell”, J. Appl. Phys., vol. 56, pp. 538-542, 1984.
    [19] J. Bu, P. Wang, L. Ai, X. Sang, and Y. Li, “Influence of p/i interface treatment on the flexible thin film solar cells for application in building integrated photovoltaics”, Adv. Mater. Res., vol. 287-290, pp. 1259-1262, 2011.
    [20] J. H. Jang and K. S. Lim, “Etching and passivation effects on born-doped amorphous silicon carbide p layer of amorphous silicon solar cell by hydrogen treatment using a mercury-sensitized photochemical vapor deposition method”, Appl. Phys. Lett., vol. 71, pp. 1846-1848, 1997.
    [21] W.S. Liao and S.C. Lee, “Water-Resistant Coating on Low Temperature Amorphous Silicon Nitride Films by a Thin Layer of Amorphous Silicon Hydrogen Alloy”, J. Electrochem. Soc., vol. 157, pp. C47-C51, 2010.
    [22] D. S. Wuu, T. N. Chen, and C. H. Liu, “Transparent Barrier Coatings on High Temperature Resisting Polymer Substrates for Flexible Electronic Applications”, J. Electrochem. Soc., vol. 157, pp. 1477-1481, 1997.
    [23] C. Guarneros, B. Rebollo-Plata, and R. Lozada-Morales, “Forbidden energy band gap in diluted a-Ge1−xSix:N films”, Thin Solid Films, vol. 520 , pp. 5463-5465, 2012.
    [24] M. Takuya and K. Michio, “Influence of alloy composition on carrier transport and solar cell properties of hydrogenated microcrystalline silicon-germanium thin films”, Appl. Phys. Lett. vol. 89, pp. 142113-142115, 2006.
    [25] L. Duan, S. Liu, and D. Zhang, “Improved flexibility of flexible organic light-emitting devices by using a metal/organic multilayer cathode”, J. J. Phys. D: Appl. Phys., vol. 42, pp. 075103-075106, 2009.
    [26] L. Ke and R. S. Kumar, “Degradation study in flexible substrate organic light-emitting diodes”, Appl. Phys. A, vol. 81, pp. 969-974, 2005.

    下載圖示 校內:2019-09-09公開
    校外:2019-09-09公開
    QR CODE