| 研究生: |
歐廣順 Ou, Kuang-Shun |
|---|---|
| 論文名稱: |
微機電機率化結構設計分析與材料測試強度整合之研究 Development of Probabilistic Design Analysis and Material Strength Data Fusion Methodologies for MEMS Structures |
| 指導教授: |
陳國聲
Chen, Kuo-Shen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 195 |
| 中文關鍵詞: | 材料強度整合 、結構設計 、機率分析 、微機電 、最佳化 、脆性材料 |
| 外文關鍵詞: | Optimization, Probabilistic Analysis, Brittle Materials, Material Strength Integration, Structural Design, MEMS |
| 相關次數: | 點閱:123 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微機電結構所使用的材料絕大部分為脆性材料,其材料測試強度與裂縫分佈有關是隨機變化的,針對此設計環境本文建立適合微機電結構設計的設計流程與輔助分析程式,並針對微機電使用的材料測試強度不一致的問題,以結構破壞機率為基礎提出測試強度資訊整合的方法解決此問題,並提出微機電的材料測試強度資料庫格式的構想,依此構想建立之材料測試強度資料庫應可徹底的解決微機電材料測試強度混亂的問題,並經驗證整合方法的正確性。本文亦推導出結構破壞機率之等效安全係數與傳統安全係數的關係式,經驗證發現在結構在小變形的狀態下,此關係式極為準確。另外以自行發展的輔助程式分析晶圓沉積薄膜的破壞機率,並與破壞力學結果互相比較,發現兩個分析方法有極高的吻合度。而本文所提出的分析流程、發展的輔助程式、及推導的關係式,無論在機率分析、結構破壞機率展示、機率法與安全係數法的比較與連結、或成本最佳化設計等方面上,皆有良好之成果。本文期望在未來能設計實驗作為本文提出的分析流程、發展的輔助程式、及推導的關係式的實質之驗證,並與本實驗室發展的其他微機電設計程式整合,發展出完整的微機電設計輔助軟體,加以推廣供微機電設計者使用,以落實本文提出之微機電結構設計方法。
Due to the effect of length scale and process dependent flaw distribution, materials for MEMS applications usually exhibit different strengths from their bulk reference state and must be properly characterized. However, most MEMS materials are brittle and their fracture strengths vary with specimen sizes, loading types, and applied loads. In addition, the geometry and applied loads between testing specimens and structures for design are usually different and the characterized strength cannot be directly applied for MEMS design without modification. The scattering and inconsistency of testing strength of brittle MEMS materials imposes a critical obstacle for structural reliability assessment of MEMS devices. In this thesis, the nature of such a discrepancy and the effort to solve this issue are discussed and a rational structural design flow for brittle MEMS devices has been established. A method based on equal failure probability is also proposed to map the material strength obtained from test specimens to the equivalent strength for MEMS structural design. This conversion can be classified into three types to deal with difference in size, geometry, and applied loadings manner and the possible approach to form a material strength database for brittle MEMS material is suggested. The weakest link theory and Weibull statistics are adapted for illustrating the proposed data reduction process. Several examples are provided to illustrate the possible applications of this work. Finally, an equivalent safety factor concept is proposed to promote probabilistic structural design and the perspective to achieve a MEMS material strength database is discussed.
[1] R. Feynman, “There’s Plenty of Room at the Bottom,”J. of Microelectromechanical Systems, Vol., No. 1, pp. 60-66, 1992.
[2] N. Maluf, An Introduction to Microelectromechanical Systems Engineering, Artech House, Boston London, 2000.
[3] 黃淳權譯, 微機電概論, 高立, 台北, 2000.
[4] 美國Sandia國家實驗網站, http://mems.sandia.gov.
[5] J.-Å Schweitz and F. Ericson, “Evaluation of mechanical materials properties by means of surface micromachined structures,” Sensors and Actuators A, Vol.74, pp. 126-133, 1999.
[6] Brigham Young Universityj網站,http://research.et.byu.edu.
[7] S.C Bromley, L. L. Howell, and B. D. Jensen, “Determination of maximum allowable strain for polysilicon micro devices,” Engineering Failure Analysis, 6, pp. 16-30, 1999.
[8] K. A. Lohner, Microfabricated Refractory Ceramic Structures for Micro Turbomachinery, S. M. Thesis, Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1999.
[9] X. Zhang, K-S Chen, and S. M. Spearing, “Thermo-Mechanical Behavior of Thick PECVD Oxide Films for Power MEMS Applications,” Sensors and Actuators A, Vol.103, pp. 263–270, 2003.
[10] S. Greek, F. Ericson, S. Johansson, and J.-Å Schweitz, “In Situ Tensile Strength Measurement and Weibull Analysis of Thick Film and Thin Micromachined Polysilicon Structures,” Thin Solid Films, Vol. 292, pp.
247-254, 1997.
[11] S. Greek, F. Ericson, and S. Johansson, “Mechanical Characterization of Thick Polysilicon Films: Young’s Modulus and Fracture Strength Evaluated with Microstructures,” J. Micromech. Microeng., Vol. 9, pp. 245-251, 1999.
[12] F. Ericson and J.-Å Schweitz, “Micromechanical Fracture Strength of Silicon,” J. Appl. Phys., Vol. 98, No. 11, pp. 5840-5844, 1990.
[13] S. Greek and F. Ericson, “Young’s Modulus, Yield Strength and Fracture Strength of Mircoelements Determined by Tensile Testing,” Microelectromechan. Structures for Mat. Res. Soc., Vol. 518, pp. 51-56, 1998.
[14] P. T. Jones, G. C. Johnson, and R. T. Howe, “Fracture Strength of Polycrystalline Silicon,” Microelectromechan. Structures for Mat. Res. Soc., Vol. 518, pp.197-202, 1998.
[15] W. N. Sharpe Jr., K. T. Turner, and R. L. Edwards, “Tensile Testing of Polysilicon,” Exper. Mech., Vol. 39, No. 3, pp. 162-170, 1999.
[16] W. Weibull, “A Statistical Theory of the Strength of Materials”, Vetenskaps Akad. Handl., No. 151, pp. 45, 1939.
[17] W. Weibull, “A Statistical Distribution Function of Wide Applicability,” J. Appl. Mech., Vol. 18, pp. 293-297, 1951.
[18] S. B. Batdorf, and J. G.. Grose, “A Statistical Theory for Fracture of Brittle Structures Subjected to Nonuniform Polyaxial Stresses1,” J. of Appl. Mech., Vol. 41, No. 2, pp.459-464, 1974.
[19] S. B. Batdorf, “Some Approximate treatments of fracture statistics for polyaxial tension,” Int. J. of Fracture, Vol.13, pp.5-11, 1977.
[20] S. B. Batdorf and H. L. Heinisch, “Weakest Link Theory Reformulated for Arbitrary Fracture Criterion,” J. Am. Ceram. Soc., Vol. 61, No. 7-8, pp. 355-358, 1978.
[21]N. N. Nemeth, J. M. Manderschied, and J. P.Gyekenyesi, Ceramic Analysis and Reliability Evaluation of Structures (CARES), NASA TP-2916, 1990.
[22] NASA 網站http://www.grc.nasa.gov/WWW/LPB/index.html.
[23] H. Kapels and R. Aigner, and J. Binder, “Fracture Strength and Fatigue of Polysilicon Determined by a Novel Thermal Actuator,” IEEE Transactions on Electron Devices, Vol. 47, No. 7, pp.1522-1528, 2000.
[24] J. Koskinen, E. Steinwall, R. Soave, and H. Johnson, “Microtensile testing of free-standing polysilicon fibers of various grain sizes,” J. Micromech. Microeng., vol. 35, pp. 13–17, 1993.
[25] W. N. Sharpe Jr., “Measurements of Young’s modulus, Poisson’s ratio, and tensile strength of polysilicon,” Proc. MEMS 97—10th IEEE International Workshop on Microelectromechanical Systems, Nagoya, Japan, pp. 424–429, 1997.
[26] S. B. Brown, W. V. Arsdell, and C. L. Muhlstein, “Materials reliability in MEMS devices,” Proc.
Transducers 97, Chicago, IL, pp. 591–593, 1998.
[27] R. Ballarini, R. L. Mullen, H. Kahn, and A. H. Heur, “The fracture toughness of polysilicon microdevices,” Microelectromechan. Structures for Mat. Res. Soc., Vol. 518, pp. 137–148, 1998.
[28] W. N. Sharpe Jr., K. T. Turner, and R. L. Edwards, “Polysilicon tensile testing with electrostatic gripping,” Microelectromechan. Structures for Mat. Res. Soc., Vol. 518, pp. 191–196, 1998.
[29] D. Lavan and T. E. Buchheit, “Testing of critical features of polysilicon MEMS,” Proc. Symposium MM, Materials Science of Microelectromechanical Systems (MEMS) Devices II. : Presented at Materials Research Society, Boston, 1999.
[30] I. Chasiotis and W. G. Knauss, “Instrumentation Requirements in Mechanical Testing for MEMS Materials,” Proc. Microscale Systems: Mechanics and Measurements Symposium 2000, pp. 56–61, 2000.
[31] W. N. Sharpe Jr. and K. Jackson, “Tensile testing of MEMS materials,” Proc.Microscale Systems: Mechanics and Measurements Symposium 2000, pp. ix–xiv, 2000.
[32] A. Kelly and N. H. Macmillan, Strong Solids, Oxford University Press, New York, 1986.
[33] K E. Petersen, “Silicon as a Mechanical Material,” Proceedings of the IEEE, Vol. 70, No. 5, 1982.
[34] K.-S. Chen, A. Ayon, and S. M. Spearing,“Controlling and Testing the Fracture Strength of Silicon on the Mesoscale,” J. Am. Ceram. Soc., Vol. 83, No. 6, pp.1476-1484, 2000.
[35] K.-S. Chen, S. M. Spearing, and N. N. Nemeth, “Structure Design of a Silicon Micro-Turbo Generator,” AIAA J., Vol. 39, No. 4, pp.720-728, 2001.
[36] T. Tauchiya, O. Tabata, J. Sakata, and Y. Taga, “Specimen Size Effect on Tensile Strength of Surface-Micromachined Polycrystalline Silicon Thin Films,” J. of Microelectromechanical Systems, Vol. 7, No. 1, pp. 106-113, Mar. 1998.
[37] J. N. Ding, Y.G. Meng, and S.Z. Wen, “Size effect on the mechanical properties of microfabricated polysilicon thin films,” J. Mater. Res., Vol. 16, No. 8, pp. 2223-2228, 2001.
[38] S. Greek, C. Seassal, P. Viktorovitch, and K. Hjort, “The Strength of Surface Micromachined Indium Phosphide Devices Evaluated by Weibull Analysis of Tensile and Bending Tests,” Sensors and Materials, Vol. 11, No. 4, pp. 247-256, 1999.
[39] V. T. Strikar and S. D. Senturia, “The Reliability of Microelectromechanical Systems (MEMS) in Shock Environments,” J. of Microelectromechanical Systems, Vol. 11, No. 3, pp. 206-214, 2002.
[40] G.-S. Chen, M.-S. Ju, and Y.-K. Fang, “Effects of Monolithic Silicon Postulated as an Isotropic Material on Design of Microstructures,” Sensors ans Actuators A, Vol. 86, pp. 108-114, 2000.
[41] D. C. Catling, “High-Sensitivity Silicon Capacitive Sensors for Measuring Medium-Vacuum Gas Pressures,” Sensors and Actuators A, Vol. 64, pp. 157-164, 1998.
[42] R. L. Barnett et al., Fracture of Brittle Materials under Transient Mechanical and Thermal Loading, US Air Force Flight Dynamics Laboratory, AFDRL-TR-66-220, 1967.
[43] J. W. Dally and W. F. Riley, Experimental Stress Analysis, McGraw-Hill, New York, international edition, 1999.
[44] D. K. Shetty, “Mixed-Mode Fracture Criteria for Reliability Analysis and Design with Structure Ceramics,” J. Eng. Gas. Turbines Power, Vol. 109, No. 3, pp. 282-289, 1987.
[45] A.C. Rufin, D. R. Samos, and R. J. H. Bollared, “Statistical Failure Prediction Models for Brittle Materials,” AIAA J., Vol. 22, No. 1, pp. 135-140, Jan. 1984.
[46] S. Sundararajan and B. Bhushan, “Development of AFM-based techniques to measure mechanical properties of nanoscale structures,”Sensors ans Actuators A, Vol. 101, pp. 338-351, 2002.
[47] MEMS Clearinghouse,網站,http://www.memsnet.org/.
[48] W. N. Sharpe Jr., K. M. Jackson, K. J.Hemker, and Z. Xie, “Effect of Specimen Size on Young’s Modulus and Fracture Strength of Polysilicon,” J.of Microelectromechanical Systems, Vol. 10, No. 3, pp. 317-326, Sep. 2001.
[49] T. Namazu and Y. Isono, “Quasi-static bending test of nano-scale SiO2 wire at intermediate temperatures using AFM-based technique.,”Sensors and Actuators A, Vol. 104 , pp. 78-85, 2003.
[50] J. N. Siddall, Probabilistic engineering design, pp. 65.
[51] T. Toshiyuki, I. Atsuko, and S. Jiro, “Tensile testing of insulating thin films; humidity effect on tensile strength of SiO2 films,”Sensors and Actuators A, Vol. 82, pp. 286–290, 2000.
[52] Z. Suo and J. W. Hutchinson, “Steady-State Cracking in Brittle Substrates Beneath Adherent Films,” Int. Solids Structures, Vol. 25, No. 11, pp. 1337-1353, 1989.
[53] J. W. Hutchinson and Z. Suo, “Mixed Mode Cracking in Layered Materials,”Adv. Appl. Mech., Vol. 29, pp.63, 1991.
[54] J. Lu(ed.), Handbook of Measurement of Residual Stresses, Fairmount Press, Lilburn, GA, 1996.
[55] T.-Y. Zhang, L.-Q. Chen, and R. Fu, “Measurements of Residual Stresses in Thin Films Deposited on Silicon Wafers by Indentation Fracture,”Acta Mater., Vol. 47, No. 14, pp.3869-3878, 1999.
[56] G. G. Stoney, “The Tension of Thin Metallic Film Deposited by Electrolysis”, Proc. R. Soc. Lond, A82, pp.172, 1909.
[57] L. G. Fréchette, Development of a Microfabricated Silicon Motor_Driven Compression System, Ph.D. Thesis, Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technology, 2000.
[58] K. A. Lohner , Microfabricated Refractory Ceramic Structures for Micro Turbomachinery, S. M. Thesis, Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1999.
[59] S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, International edition, McGraw-Hill, New York, 1959.
[60] K-S Chen and K-S Ou, “Modification of curvature-based thin-film residual stress measurement for MEMS applications,” J. Micromech. Microeng., Vol. 12, pp. 917–924, 2002.
[61] E. E. Gdoutos, Fracture Mechanics, Kluwer Academic, Dordrecht, pp.86-89, 1993.
[62] Y. Matsuoka, Y. Yamamoto, K. Yamada, S. Shimada, M. Tanabe, A. Yasukawa, and H. Matsuzaka, “Characteristic Analysis of a Pressure Sensor Using the Silicon Piezoresistance Effect for High-Pressure Measurements,” J. Micromech. Microeng., Vol. 5,pp. 25-31, 1995.
[63] J.S. Yang and X. Zhang, “A High Sensitivity Resonator Pressure Sensor,”Sensors and Actuators A, Vol. 101, pp. 332-337, 2002.
[64] S. Guo, J. Guo, and W. H. Ko, “A Monolithically Integrated Surface Micromachined Touch Mode Capacitive Pressure Sensor,”Sensors and Actuators A, Vol. 80, pp. 224-232, 2000.