簡易檢索 / 詳目顯示

研究生: 陳唯儀
Chen, Wei-Yi
論文名稱: 營養不足對檸檬素缺乏肝癌細胞代謝的影響
The impact of nutritional deficit on metabolism in citrin-deficiency HepG2 cells
指導教授: 謝淑珠
Shiesh, Shu-Chu
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 64
中文關鍵詞: 菸草醯胺腺嘌呤二核苷酸精胺丁二酸合成酶尿素循環檸檬素
外文關鍵詞: nicotinamide adenine dinucleotide, argininosuccinate synthetase, urea cycle, citrin
相關次數: 點閱:119下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 檸檬素(citrin)是位在粒線體內膜上的運輸蛋白,主要表現在肝臟。檸檬素的功能是將粒線體的天門冬胺酸(aspartate)送到細胞質,並交換麩醯胺酸(glutamate)進入粒線體中。檸檬素也參與蘋果酸-天門冬胺酸運輸器,負責將細胞質的還原態菸草醯胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide reduced form, NADH)相當物質送入粒線體內。瓜胺酸血症(citrullinemia)是一種遺傳性疾病,第I型瓜胺酸血症(CTLN1)是由於ASS1基因異常,導致尿素循環的精胺丁二酸合成酶(argininosuccinate synthetase, ASS)缺失,使得瓜胺酸無法轉換成精胺丁二酸。第II型瓜胺酸血症(CTLN2)是由於SLC25A13基因突變導致檸檬素缺失,並且使肝臟ASS蛋白質變少,是目前台灣最常見的尿素循環代謝疾病。先前的報導指出檸檬素缺乏會有碳水化合物所引起毒性的問題,臨床上以低碳水化合物、高蛋白質的飲食,或是給予丙酮酸(pyruvate)治療病人,以促進NADH轉換成NAD+,減少NADH的堆積。但是檸檬素缺乏致成肝臟ASS蛋白質下降的機制不清楚。我們假設在檸檬素缺乏時,糖類的攝取會改變細胞NAD+/NADH比值,進而影響細胞質ASS的蛋白質表現,以及尿素循環路徑的相關代謝物改變。因此本研究建立了兩個液相層析串聯質譜儀的方法,分別偵測細胞的NAD+和NADH的濃度,以及偵測細胞內尿素循環相關代謝物的濃度;並探討當細胞缺乏檸檬素時,給予不同的葡葡糖濃度之培養基伴隨麩醯胺酸或精胺酸的補充是否會影響其NAD+/NADH比值、ASS蛋白質量,以及尿素循環相關代謝物濃度。近來報導ASS會促使單磷酸腺苷(adenosine monophosphate, AMP)活化蛋白激酶(AMP-activated protein kinase, AMPK)被磷酸化,進而促進β-氧化作用以及抑制脂質的合成代謝。我們想知道給予營養同的培養所造成的ASS蛋白質改變,是否會影響p-AMPK的蛋白質表現。藉由慢病毒為載體的shRNA抑制SLC25A13的表現,建立體外檸檬素缺乏的人類肝癌細胞(HepG2),檸檬素被抑制達90%,且會使細胞存活率下降。ASS和AMPK的蛋白質量都減少了。細胞質的NAD+與NADH濃度則沒有明顯差異。而精胺酸、瓜胺酸、離胺酸及麩醯胺酸上升趨勢,天門冬胺酸下降趨勢。而在檸檬素缺乏HepG2細胞培養在不同葡萄糖濃度的培養基,細胞存活率則沒有明顯差異,但隨葡萄糖濃度越低而有細胞存活率下降的趨勢。在檸檬素缺乏HepG2細胞ASS的蛋白質量也減少約17%了,而限制葡萄糖可以減緩ASS的蛋白質減少。細胞質的NAD+與NADH濃度則沒有明顯差異。在尿素循環相關代謝物的部分,當細胞培養於低濃度葡萄糖與高濃度葡萄糖相比則沒有明顯差異,但限制醣類的攝取有精胺酸、瓜胺酸與麩醯胺酸下降的趨勢以及天門冬胺酸與麩胺酸上升的趨勢。添加麩醯胺酸或精胺酸到低濃度葡萄糖的培養基,可以緩減低濃度葡萄糖所造成的細胞存活率下降以及ASS、p-AMPK蛋白質量減少。添加精胺酸到低濃度葡萄糖的培養基,可以有效減緩檸檬素缺乏造成ASS下降所導致的天門冬胺酸下降。我們發現細胞限制葡萄糖對ASS蛋白質量和磷酸化AMPK的影響是一致的,顯示ASS蛋白質量改變可能是透過影響AMPK磷酸化。總結來說,我們建立了兩個液相層析串聯式質譜儀的方法,用來偵測細胞質的NAD+與NADH濃度,以及尿素循環相關代謝物的濃度。我們所看到結果與臨床上病人限制碳水化合物的攝取可以減緩檸檬素缺乏所造成的肝臟ASS蛋白質缺乏是一致的。檸檬素缺乏會使ASS及p-AMPK下降,而補充麩醯胺酸或精胺酸可以有效回復檸檬素缺乏所造成的ASS蛋白質量及AMPK的磷酸化下降。

    Citrin, expressed mainly in the liver, functions as malate-aspartate shuttle to transport cytosolic NADH-reducing equivalents into mitochondrial. The patients with citrin deficiency demonstrated decrease of liver-specific argininosuccinate synthetase (ASS). Carbohydrate diets may increase cytosolic NADH production and should be avoided in citrin deficiency patients. However, the mechanisms of citrin defect-induced decrease of liver ASS remain unknown. Therefore, we aimed to establish two liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods to measure cytosolic NAD+ and NADH; and the urea cycle-related metabolites. We also investigated whether citrin-deficiency with low-glucose culture medium would change the NAD+/NADH ratio, metabolites and ASS protein. We examined whether the changes of cytosolic ASS protein levels caused by different nutrition in medium would affect the expression of phosphorylated AMP-activated protein kinase (p-AMPK). Citrin-deficiency HepG2 cells showed the decrease of cell viability, ASS and p-AMPK protein levels and the increase of intracellular lysine and glutamine levels. The results showed that low-glucose treatments decreased the cell viability, cytosolic ASS and p-AMPK protein levels. Addition of glutamine/arginine in low glucose-containing culture medium could reverse the decrease of cell viability, ASS and AMPK. The changes of cytosolic ASS levels cultured in low glucose were in parallel with the decreased AMPK activation. To sum up, two LC-MS/MS methods were established. Our results indicate that restricted glucose intake and replaced glucose with glutamine or arginine could alleviate the decrease of liver-specific ASS caused by citrin deficiency. Citrin deficiency caused low expression of ASS and AMPK, which would be alleviated by glutamine or arginine supplements.

    中文摘要I 英文摘要III 致謝VII 目錄VIII 表目錄X 圖目錄XI 附錄目錄XIII 縮寫索引XIV 第一章 緒論1 檸檬素及檸檬素缺失1 瓜胺酸血症2 精胺丁二酸合成酵素3 菸鹼醯胺腺嘌呤二核苷酸4 單磷酸腺苷活化的蛋白激酶5 第二章 研究目的與實驗策略7 第三章 材料與方法8 細胞培養8 檸檬素缺乏的HepG2細胞8 細胞質與粒線體的萃取10 蛋白質定量11 西方墨點法12 細胞存活率的檢測14 利用高效能液相層析串聯質譜儀定量細胞內與細胞質的NAD+及NADH14 利用高效能液相層析串聯質譜儀定量細胞內的精胺酸、天門冬胺酸、瓜胺酸、離胺酸、麩醯胺酸、麩胺酸及牛磺酸15 統計分析16 第四章 結果18 第五章 討論22 第六章 總結25 參考資料26 表附錄36 圖附錄42 附錄55

    1.Kobayashi K, Sinasac DS, Iijima M, Boright AP, Begum L, Lee JR, Yasuda T, Ikeda S, Hirano R, Terazono H, Crackower MA, Kondo I, Tsui LC, Scherer SW, Saheki T. The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein. Nat Genet 1999;22:159-63.
    2.Saheki T, Kobayashi K. Mitochondrial aspartate glutamate carrier (citrin) deficiency as the cause of adult-onset type II citrullinemia (CTLN2) and idiopathic neonatal hepatitis (NICCD). J Hum Genet 2002;47:333-41.
    3.Palmieri L, Pardo B, Lasorsa FM, del Arco A, Kobayashi K, Iijima M, Runswick MJ, Walker JE, Saheki T, Satrustegui J, Palmieri F. Citrin and aralar1 are Ca(2+)-stimulated aspartate/glutamate transporters in mitochondria. Embo J 2001;20:5060-9.
    4.Satrustegui J, Pardo B, Del Arco A. Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiol Rev 2007;87:29-67.
    5.Saheki T, Kobayashi K, Iijima M, Moriyama M, Yazaki M, Takei Y, Ikeda S. Metabolic derangements in deficiency of citrin, a liver-type mitochondrial aspartate-glutamate carrier. Hepatol Res 2005;33:181-4.
    6.Gao HZ, Kobayashi K, Tabata A, Tsuge H, Iijima M, Yasuda T, Kalkanoglu HS, Dursun A, Tokatli A, Coskun T, Trefz FK, Skladal D, Mandel H, Seidel J, Kodama S, Shirane S, Ichida T, Makino S, Yoshino M, Kang JH, Mizuguchi M, Barshop BA, Fuchinoue S, Seneca S, Zeesman S, Knerr I, Rodes M, Wasant P, Yoshida I, De Meirleir L, Abdul Jalil M, Begum L, Horiuchi M, Katunuma N, Nakagawa S, Saheki T. Identification of 16 novel mutations in the argininosuccinate synthetase gene and genotype-phenotype correlation in 38 classical citrullinemia patients. Hum Mutat 2003;22:24-34.
    7.Fiermonte G, Parisi G, Martinelli D, De Leonardis F, Torre G, Pierri CL, Saccari A, Lasorsa FM, Vozza A, Palmieri F, Dionisi-Vici C. A new Caucasian case of neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD): a clinical, molecular, and functional study. Mol Genet Metab 2011;104:501-6.
    8.Dimmock D, Kobayashi K, Iijima M, Tabata A, Wong LJ, Saheki T, Lee B, Scaglia F. Citrin deficiency: a novel cause of failure to thrive that responds to a high-protein, low-carbohydrate diet. Pediatrics 2007;119:e773-7.
    9.Ko JM, Kim GH, Kim JH, Kim JY, Choi JH, Ushikai M, Saheki T, Kobayashi K, Yoo HW. Six cases of citrin deficiency in Korea. Int J Mol Med 2007;20:809-15.
    10.Fiermonte G, Soon D, Chaudhuri A, Paradies E, Lee PJ, Krywawych S, Palmieri F, Lachmann RH. An adult with type 2 citrullinemia presenting in Europe. N Engl J Med 2008;358:1408-9.
    11.Christensen CE, Karlsson M, Winther JR, Jensen PR, Lerche MH. Non-invasive in-cell determination of free cytosolic [NAD+]/[NADH] ratios using hyperpolarized glucose show large variations in metabolic phenotypes. J Biol Chem 2014;289:2344-52.
    12.Sun F, Dai C, Xie J, Hu X. Biochemical issues in estimation of cytosolic free NAD/NADH ratio. PLoS One 2012;7:e34525.
    13.Hayasaka K, Numakura C, Toyota K, Kakizaki S, Watanabe H, Haga H, Takahashi H, Takahashi Y, Kaneko M, Yamakawa M, Nunoi H, Kato T, Ueno Y, Mori M. Medium-chain triglyceride supplementation under a low-carbohydrate formula is a promising therapy for adult-onset type II citrullinemia. Mol Genet Metab Rep 2014;1:42-50.
    14.Haines RJ, Pendleton LC, Eichler DC. Argininosuccinate synthase: at the center of arginine metabolism. Int J Biochem Mol Biol 2011;2:8-23.
    15.Kobayashi K, Iijima M, Yasuda T, Sinasac DS, Yamaguchi N, Tsui L-C, Scherer SW, Saheki T. Type II Citrullinemia (Citrin Deficiency): A Mysterious Disease caused by a Defect of Calcium-Binding Mitochondrial Carrier Protein. In: Pochet R, Donato R, Haiech J, Heizmann C, Gerke V, eds. Calcium: The Molecular Basis of Calcium Action in Biology and Medicine. Dordrecht: Springer Netherlands, 2000:565-587.
    16.Saheki T, Inoue K, Tushima A, Mutoh K, Kobayashi K. Citrin deficiency and current treatment concepts. Mol Genet Metab 2010;100(Suppl 1):S59-64.
    17.Zhang MH, Gong JY, Wang JS. Citrin deficiency presenting as acute liver failure in an eight-month-old infant. World J Gastroenterol 2015;21:7331-4.
    18.Kimura N, Kubo N, Narumi S, Toyoki Y, Ishido K, Kudo D, Umehara M, Yakoshi Y, Hakamada K. Liver transplantation versus conservative treatment for adult-onset type II citrullinemia: our experience and a review of the literature. Transplant Proc 2013;45:3432-7.
    19.Tamamori A, Okano Y, Ozaki H, Fujimoto A, Kajiwara M, Fukuda K, Kobayashi K, Saheki T, Tagami Y, Yamano T. Neonatal intrahepatic cholestasis caused by citrin deficiency: severe hepatic dysfunction in an infant requiring liver transplantation. Eur J Pediatr 2002;161:609-13.
    20.Ikeda S, Yazaki M, Takei Y, Ikegami T, Hashikura Y, Kawasaki S, Iwai M, Kobayashi K, Saheki T. Type II (adult onset) citrullinaemia: clinical pictures and the therapeutic effect of liver transplantation. J Neurol Neurosurg Psychiatry 2001;71:663-70.
    21.Ohura T, Kobayashi K, Tazawa Y, Abukawa D, Sakamoto O, Tsuchiya S, Saheki T. Clinical pictures of 75 patients with neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). J Inherit Metab Dis 2007;30:139-44.
    22.Serrano M, Martins C, Perez-Duenas B, Gomez-Lopez L, Murgui E, Fons C, Garcia-Cazorla A, Artuch R, Jara F, Arranz JA, Haberle J, Briones P, Campistol J, Pineda M, Vilaseca MA. Neuropsychiatric manifestations in late-onset urea cycle disorder patients. J Child Neurol 2010;25:352-8.
    23.Yeh JN, Jeng YM, Chen HL, Ni YH, Hwu WL, Chang MH. Hepatic steatosis and neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) in Taiwanese infants. J Pediatr 2006;148:642-6.
    24.Saheki T, Inoue K, Ono H, Tushima A, Katsura N, Yokogawa M, Yoshidumi Y, Kuhara T, Ohse M, Eto K, Kadowaki T, Sinasac DS, Kobayashi K. Metabolomic analysis reveals hepatic metabolite perturbations in citrin/mitochondrial glycerol-3-phosphate dehydrogenase double-knockout mice, a model of human citrin deficiency. Mol Genet Metab 2011;104:492-500.
    25.Saheki T, Kobayashi K, Iijima M, Horiuchi M, Begum L, Jalil MA, Li MX, Lu YB, Ushikai M, Tabata A, Moriyama M, Hsiao KJ, Yang Y. Adult-onset type II citrullinemia and idiopathic neonatal hepatitis caused by citrin deficiency: involvement of the aspartate glutamate carrier for urea synthesis and maintenance of the urea cycle. Mol Genet Metab 2004;81(Suppl 1):S20-6.
    26.Kobayashi K, Horiuchi M, Saheki T. Pancreatic secretory trypsin inhibitor as a diagnostic marker for adult-onset type II citrullinemia. Hepatology 1997;25:1160-5.
    27.Yasuda T, Yamaguchi N, Kobayashi K, Nishi I, Horinouchi H, Jalil MA, Li MX, Ushikai M, Iijima M, Kondo I, Saheki T. Identification of two novel mutations in the SLC25A13 gene and detection of seven mutations in 102 patients with adult-onset type II citrullinemia. Hum Genet 2000;107:537-45.
    28.Tang L, Chen L, Wang H, Dai L, Pan S. Case report: An adult-onset type II citrin deficiency patient in the emergency department. Exp Ther Med 2016;12:410-414.
    29.Ruder J, Legacy J, Russo G, Davis R. Neonatal citrullinemia: novel, reversible neuroimaging findings correlated with ammonia level changes. Pediatr Neurol 2014;51:553-6.
    30.Ikeda S, Kawa S, Takei Y, Yamamoto K, Shimojo H, Tabata K, Kobayashi K, Saheki T. Chronic pancreatitis associated with adult-onset type II citrullinemia: clinical and pathologic findings. Ann Intern Med 2004;141:W109-10.
    31.Miller MJ, Soler-Alfonso CR, Grund JE, Fang P, Sun Q, Elsea SH, Sutton VR. Improved standards for prenatal diagnosis of citrullinemia. Mol Genet Metab 2014;112:205-9.
    32.Zheng QQ, Zhang ZH, Zeng HS, Lin WX, Yang HW, Yin ZN, Song YZ. Identification of a Large SLC25A13 Deletion via Sophisticated Molecular Analyses Using Peripheral Blood Lymphocytes in an Infant with Neonatal Intrahepatic Cholestasis Caused by Citrin Deficiency (NICCD): A Clinical and Molecular Study. Biomed Res Int 2016;2016:4124263.
    33.Saheki T, Kobayashi K, Terashi M, Ohura T, Yanagawa Y, Okano Y, Hattori T, Fujimoto H, Mutoh K, Kizaki Z, Inui A. Reduced carbohydrate intake in citrin-deficient subjects. J Inherit Metab Dis 2008;31:386-94.
    34.Nakamura M, Yazaki M, Kobayashi Y, Fukushima K, Ikeda S, Kobayashi K, Saheki T, Nakaya Y. The characteristics of food intake in patients with type II citrullinemia. J Nutr Sci Vitaminol (Tokyo) 2011;57:239-45.
    35.Ueda A, Okada K, Takahara T, Iwasa K, Shinagawa K, Entani A, Inatsuchi S, Ando T, Fujinami H, Tajiri K, Tokimitsu Y, Ogawa K, Miyazono T, Miyazaki T, Murakami J, Hosokawa A, Yasumura S, Minemura M, Kudo T, Sugiyama T. A case of adult-onset type II citrullinemia induced by hospital diet. Clin J Gastroenterol 2011;4:28-33.
    36.Hayasaka K, Numakura C, Toyota K, Kimura T. Treatment with lactose (galactose)-restricted and medium-chain triglyceride-supplemented formula for neonatal intrahepatic cholestasis caused by citrin deficiency. JIMD Rep 2012;2:37-44.
    37.Husson A, Brasse-Lagnel C, Fairand A, Renouf S, Lavoinne A. Argininosuccinate synthetase from the urea cycle to the citrulline-NO cycle. Eur J Biochem 2003;270:1887-99.
    38.Moradi H, Kwok V, Vaziri ND. Effect of chronic renal failure on arginase and argininosuccinate synthetase expression. Am J Nephrol 2006;26:310-8.
    39.Nagamani SCS, Erez A, Lee B. Argininosuccinate Lyase Deficiency. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens K, eds. GeneReviews(R). Seattle (WA): University of Washington, Seattle, 1993.
    40.Diez-Fernandez C, Wellauer O, Gemperle C, Rufenacht V, Fingerhut R, Haberle J. Kinetic mutations in argininosuccinate synthetase deficiency: characterisation and in vitro correction by substrate supplementation. J Med Genet 2016;53:710-9.
    41.Wu G, Morris SM, Jr. Arginine metabolism: nitric oxide and beyond. Biochem J 1998;336:1-17.
    42.Tousoulis D, Kampoli AM, Tentolouris C, Papageorgiou N, Stefanadis C. The role of nitric oxide on endothelial function. Curr Vasc Pharmacol 2012;10:4-18.
    43.Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J 2012;33:829-37.
    44.Kim RH, Coates JM, Bowles TL, McNerney GP, Sutcliffe J, Jung JU, Gandour-Edwards R, Chuang FY, Bold RJ, Kung HJ. Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res 2009;69:700-8.
    45.Kelly MP, Jungbluth AA, Wu BW, Bomalaski J, Old LJ, Ritter G. Arginine deiminase PEG20 inhibits growth of small cell lung cancers lacking expression of argininosuccinate synthetase. Br J Cancer 2012;106:324-32.
    46.Delage B, Fennell DA, Nicholson L, McNeish I, Lemoine NR, Crook T, Szlosarek PW. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int J Cancer 2010;126:2762-72.
    47.Feun L, You M, Wu CJ, Kuo MT, Wangpaichitr M, Spector S, Savaraj N. Arginine deprivation as a targeted therapy for cancer. Curr Pharm Des 2008;14:1049-57.
    48.Savaraj N, You M, Wu C, Wangpaichitr M, Kuo MT, Feun LG. Arginine deprivation, autophagy, apoptosis (AAA) for the treatment of melanoma. Curr Mol Med 2010;10:405-12.
    49.Qiu F, Chen YR, Liu X, Chu CY, Shen LJ, Xu J, Gaur S, Forman HJ, Zhang H, Zheng S, Yen Y, Huang J, Kung HJ, Ann DK. Arginine starvation impairs mitochondrial respiratory function in ASS1-deficient breast cancer cells. Sci Signal 2014;7:31.
    50.McAlpine JA, Lu HT, Wu KC, Knowles SK, Thomson JA. Down-regulation of argininosuccinate synthetase is associated with cisplatin resistance in hepatocellular carcinoma cell lines: implications for PEGylated arginine deiminase combination therapy. BMC Cancer 2014;14:621.
    51.Bowles TL, Kim R, Galante J, Parsons CM, Virudachalam S, Kung HJ, Bold RJ. Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase. Int J Cancer 2008;123:1950-5.
    52.Teodoridis JM, Strathdee G, Brown R. Epigenetic silencing mediated by CpG island methylation: potential as a therapeutic target and as a biomarker. Drug Resist Updat 2004;7:267-278.
    53.Szlosarek PW, Steele JP, Nolan L, Gilligan D, Taylor P, Spicer J, Lind M, Mitra S, Shamash J, Phillips MM, Luong P, Payne S, Hillman P, Ellis S, Szyszko T, Dancey G, Butcher L, Beck S, Avril NE, Thomson J, Johnston A, Tomsa M, Lawrence C, Schmid P, Crook T, Wu BW, Bomalaski JS, Lemoine N, Sheaff MT, Rudd RM, Fennell D, Hackshaw A. Arginine deprivation with pegylated arginine deiminase in patients with argininosuccinate synthetase 1-deficient malignant pleural mesothelioma: a randomized clinical trial. JAMA Oncol 2017;3:58-66.
    54.Feun L, Savaraj N. Pegylated arginine deiminase: a novel anticancer enzyme agent. Expert Opin Investig Drugs 2006;15:815-22.
    55.Quillard M, Husson A, Lavoinne A. Glutamine increases argininosuccinate synthetase mRNA levels in rat hepatocytes. The involvement of cell swelling. Eur J Biochem 1996;236:56-9.
    56.Brasse-Lagnel C, Fairand A, Lavoinne A, Husson A. Glutamine stimulates argininosuccinate synthetase gene expression through cytosolic O-glycosylation of Sp1 in Caco-2 cells. J Biol Chem 2003;278:52504-10.
    57.Gariani K, Menzies KJ, Ryu D, Wegner CJ, Wang X, Ropelle ER, Moullan N, Zhang H, Perino A, Lemos V, Kim B, Park YK, Piersigilli A, Pham TX, Yang Y, Ku CS, Koo SI, Fomitchova A, Canto C, Schoonjans K, Sauve AA, Lee JY, Auwerx J. Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice. Hepatology 2016;63:1190-204.
    58.Zhou CC, Yang X, Hua X, Liu J, Fan MB, Li GQ, Song J, Xu TY, Li ZY, Guan YF, Wang P, Miao CY. Hepatic NAD(+) deficiency as a therapeutic target for non-alcoholic fatty liver disease in ageing. Br J Pharmacol 2016;173:2352-68.
    59.Moriyama M, Li MX, Kobayashi K, Sinasac DS, Kannan Y, Iijima M, Horiuchi M, Tsui LC, Tanaka M, Nakamura Y, Saheki T. Pyruvate ameliorates the defect in ureogenesis from ammonia in citrin-deficient mice. J Hepatol 2006;44:930-8.
    60.Saheki T, Iijima M, Li MX, Kobayashi K, Horiuchi M, Ushikai M, Okumura F, Meng XJ, Inoue I, Tajima A, Moriyama M, Eto K, Kadowaki T, Sinasac DS, Tsui LC, Tsuji M, Okano A, Kobayashi T. Citrin/mitochondrial glycerol-3-phosphate dehydrogenase double knock-out mice recapitulate features of human citrin deficiency. J Biol Chem 2007;282:25041-52.
    61.Young LH. AMP-activated protein kinase conducts the ischemic stress response orchestra. Circulation 2008;117:832-40.
    62.Viollet B, Foretz M, Guigas B, Horman S, Dentin R, Bertrand L, Hue L, Andreelli F. Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J Physiol 2006;574:41-53.
    63.Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 2012;13:251-62.
    64.Madiraju AK, Alves T, Zhao X, Cline GW, Zhang D, Bhanot S, Samuel VT, Kibbey RG, Shulman GI. Argininosuccinate synthetase regulates hepatic AMPK linking protein catabolism and ureagenesis to hepatic lipid metabolism. Proc Natl Acad Sci U S A 2016;113:3423-3430.
    65.Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, Rooney DL, Zhang M, Ihrig MM, McManus MT, Gertler FB, Scott ML, Van Parijs L. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003;33:401-6.
    66.Menzies KJ, Zhang H, Katsyuba E, Auwerx J. Protein acetylation in metabolism [mdash] metabolites and cofactors. Nat Rev Endocrinol 2016;12:43-60.
    67.Leung TM, Lu Y, Yan W, Moron-Concepcion JA, Ward SC, Ge X, Conde de la Rosa L, Nieto N. Argininosuccinate synthase conditions the response to acute and chronic ethanol-induced liver injury in mice. Hepatology 2012;55:1596-609.
    68.Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Mates JM, DeBerardinis RJ. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci U S A 2011;108:8674-9.
    69.Kobayashi K, Saheki T, Song YZ. Citrin Deficiency. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens K, eds. GeneReviews(R). Seattle (WA): University of Washington, Seattle University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved., 1993.
    70.Holecek M. Side effects of long-term glutamine supplementation. JPEN J Parenter Enteral Nutr 2013;37:607-16.
    71.Barbul A, Sisto DA, Wasserkrug HL, Efron G. Arginine stimulates lymphocyte immune response in healthy human beings. Surgery 1981;90:244-51.

    無法下載圖示 校內:2022-09-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE