| 研究生: |
劉淑民 Liu, Shu-Ming |
|---|---|
| 論文名稱: |
以特徵值擷取方式進行管制圖圖形辨識 - 以半導體製程管制之應用為例 Recognition of Control Chart Pattern Using Features Selection - A Case for Process Control in the Semiconductor Industry |
| 指導教授: |
黃宇翔
Huang, Yeu-Shiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 管制圖 、特徵值選取 、圖形辨識 、支援向量機 |
| 外文關鍵詞: | Control Chart, Features Selection, Pattern Recognition, Support Vector Machine |
| 相關次數: | 點閱:97 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統 Shewhart管制圖在常態分佈的假設前提下進行管控,而目前半導體產業連續性的自動化生產過程中,其假設並不全盤適用於工廠實際量測的品質特性,某些品質特性呈現特殊趨勢,而管制圖預警模式建立之目的在於提早發現潛在的變異風險。本研究將使用分類準確度高的支援向量機 (Support Vector Machine, SVM) 來建構模型,利用監督式學習的概念對比過去資料或同型態品質特性的資料點,並即時反應變化趨勢,以提醒人員作為異常處理辨識之參考。
本研究採以半導體實際生產數據呈現真實趨勢變化,提出三種於工廠常見異常趨勢圖形做為分類主題,並探究以何種型態特徵值作為變數,例如原始資料、統計特徵值、形狀特徵值或以共變性篩選特徵值,以及需要多少樣本區間或訓練樣本比例更適用於業界生產時異常偵測分析,可協助於變數選擇時決策同時節省成本。同時本研究也揭露了不同的變數組合可增加分類正確性的可能性,不一定需要透過調整分類器參數提高正確性,避免造成過度配適 (Over Fitting) 的問題;且本研究也發現當不同變數組合所提供的分類效果均表現佳且差異不大時,建議在實務應用上亦可選擇較少變數或容易計算之組合,目的為達到高效能低成本的資料處理步驟。
This study uses support vector machine (SVM) to construct the model based on the concept of supervised learning, compares the quality characteristics of the data points in the historical data, and then responds to the alert from the control chart as a reference for identifying abnormal handling in process.
This study uses the real semiconductor manufacturing process data and classifies three common abnormal trend patterns in the factory into cyclic, shift, and trend patterns. We also consider several related variables, such as the raw data, statistical features, shape features, and the selected features with screening eigenvalues to investigate how many sample intervals or training-testing sample ratios are suitable for detecting abnormality during the manufacturing process. This study also reveals the feasibility that different combinations of the related variables can enhance the classification accuracy. It is unnecessary to improve the classification accuracy by adjusting the parameters of the classifier to prevent the occurrence of over fitting problems. We find that when the classification effects from the different combinations of the variables are good or do not vary a lot, using the combination of the less variables for simple calculation is feasible for a practical consideration to achieve high-performance and low-cost data pre-processing steps.
Addeh, J., Ebrahimzadeh, A., Azarbad, M., & Ranaee, V. (2014). Statistical process control using optimized neural networks: A case study. ISA transactions, 53(5), 1489-1499.
Aly, A. A., Saleh, N. A., Mahmoud, M. A., & Woodall, W. H. (2015). A reevaluation of the adaptive exponentially weighted moving average control chart when parameters are estimated. Quality and Reliability Engineering International, 31(8), 1611-1622.
Bag, M., Gauri, S. K., & Chakraborty, S. (2012). An expert system for control chart pattern recognition. The International Journal of Advanced Manufacturing Technology, 62(1), 291-301.
Chowdhury, S., Mukherjee, A., & Chakraborti, S. (2015). Distribution‐free phase II CUSUM control chart for joint monitoring of location and scale. Quality and Reliability Engineering International, 31(1), 135-151.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
Cuentas, S., Peñabaena-Niebles, R., & Garcia, E. (2017). Support vector machine in statistical process monitoring: a methodological and analytical review. The International Journal of Advanced Manufacturing Technology, 91(1-4), 485-500.
Demetgul, M. (2013). Fault diagnosis on production systems with support vector machine and decision trees algorithms. The International Journal of Advanced Manufacturing Technology, 1-12.
Ebrahimzadeh, A., Addeh, J., & Ranaee, V. (2013). Recognition of control chart patterns using an intelligent technique. Applied Soft Computing, 13(5), 2970-2980.
Electric, W. (1956). Statistical quality control handbook. Easton: The Mack Printing Company.
Epprecht, E. K., Aparisi, F., & Ruiz, O. (2018). Optimum variable-dimension EWMA chart for multivariate statistical process control. Quality Engineering, 30(2), 268-282.
Fergani, B. (2015). News schemes for activity recognition systems using PCA-WSVM, ICA-WSVM, and LDA-WSVM. Information, 6(3), 505-521.
Gani, W., & Limam, M. (2013). Performance Evaluation of One‐Class Classification‐based Control Charts through an Industrial Application. Quality and Reliability Engineering International, 29(6), 841-854.
Gauri, S. K., & Chakraborty, S. (2007). A study on the various features for effective control chart pattern recognition. The International Journal of Advanced Manufacturing Technology, 34(3), 385-398.
Gu, N., Cao, Z., Xie, L., Creighton, D., Tan, M., & Nahavandi, S. (2013). Identification of concurrent control chart patterns with singular spectrum analysis and learning vector quantization. Journal of intelligent manufacturing, 24(6), 1241-1252.
Guh & Shih (2006). Improved neural network-based control chart pattern recognition using raw data and statistical data simultaneously. A Chinese Society for Quality, 2006.
Hachicha, W., & Ghorbel, A. (2012). A survey of control-chart pattern-recognition literature (1991–2010) based on a new conceptual classification scheme. Computers & Industrial Engineering, 63(1), 204-222.
Hassan, A., Baksh, M. S. N., Shaharoun, A. M., & Jamaluddin, H. (2003). Improved SPC chart pattern recognition using statistical features. International Journal of Production Research, 41(7), 1587-1603.
Hua, Z., Wang, Y., Xu, X., Zhang, B., & Liang, L. (2007). Predicting corporate financial distress based on integration of support vector machine and logistic regression. Expert Systems with Applications, 33(2), 434-440.
Huang, W., Nakamori, Y., & Wang, S. Y. (2005). Forecasting stock market movement direction with support vector machine. Computers & Operations Research, 32(10), 2513-2522.
Kao, L. J., Lee, T. S., & Lu, C. J. (2016). A multi-stage control chart pattern recognition scheme based on independent component analysis and support vector machine. Journal of Intelligent Manufacturing, 27(3), 653-664.
Khormali, A., & Addeh, J. (2016). A novel approach for recognition of control chart patterns: Type-2 fuzzy clustering optimized support vector machine. ISA transactions, 63, 256-264.
Li, T. F., Hu, S., Wei, Z. Y., & Liao, Z. Q. (2013). A framework for diagnosing the out-of-control signals in multivariate process using optimized support vector machines. Mathematical Problems in Engineering, 2013.
Lu, C. J., Shao, Y. E., & Li, C. C. (2014). Recognition of concurrent control chart patterns by integrating ICA and SVM. Applied Mathematics & Information Sciences, 8(2), 681
Mahdiyeh Eslami, Ali Noori & Moslem Amirinejad (2015). Control chart pattern recognition using neural networks and bees algorithm. ARSOM. 4(3), 97-105.
Montgomery, D. C. (2009). Introduction to statistical quality control. John Wiley & Sons (New York).
Oviedo-Trespalacios, O., & Peñabaena-Niebles, R. (2016). Statistical performance of control charts with variable parameters for autocorrelated processes. Dyna, 83(197), 120-127
Pham, D. T., & Wani, M. A. (1997). Feature-based control chart pattern recognition. International Journal of production research, 35(7), 1875-1890.
Razzaghi, T., Roderick, O., Safro, I., & Marko, N. (2016). Multilevel weighted support vector machine for classification on healthcare data with missing values. PloS one, 11(5), e0155119.
Saleh, N. A., Mahmoud, M. A., Jones-Farmer, L. A., Zwetsloot, I. N. E. Z., & Woodall, W. H. (2015). Another look at the EWMA control chart with estimated parameters. Journal of Quality Technology, 47(4), 363-382.
Shaban, A., Shalaby, M., Abdelhafiez, E., & Youssef, A. S. (2010). Automated identification of basic control charts patterns using neural networks. Journal of Software Engineering and Applications, 3(03), 208.
Sung, J. (2001). CMP pad dresser: A diamond grid solution. In Proceedings of the Sixth Applied Diamond Conference/Second Frontier Carbon Technology Joint Conference(ADC/FCT 2001) (Vol. 1).
Sutanto, D. H., Ghani, A., & Khanapi, M. (2015). A Benchmark Feature Selection Framework for Non Communicable Disease Prediction Model. Advanced Science Letters, 21(10), 3409-3416.
Vapnik, V., Golowich, S. E., & Smola, A. J. (1997). Support vector method for function approximation, regression estimation and signal processing. In Advances in neural information processing systems (pp. 281-287).
Wang, C. H., Guo, R. S., Chiang, M. H., & Wong, J. Y. (2008). Decision tree based control chart pattern recognition. International Journal of Production Research, 46(17), 4889-4901.
Woodall, W. H., & Montgomery, D. C. (1999). Research issues and ideas in statistical process control. Journal of Quality Technology, 31(4), 376.
Xanthopoulos, P., & Razzaghi, T. (2014). A weighted support vector machine method for control chart pattern recognition. Computers & Industrial Engineering, 70, 134-149.