簡易檢索 / 詳目顯示

研究生: 李彥緯
Li, Yan-Wei
論文名稱: 合成具對掌輔助劑重氮化合物並探討其不對稱N-H插入反應之選擇性
Investigations on the Synthesis of Chiral Auxiliary Diazo Compounds and Their Applications in Asymmetry N-H Insertion Reactions
指導教授: 周鶴軒
Chou, Ho-Hsuan
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 129
中文關鍵詞: 對掌輔助劑之重氮化合物不對稱N-H插入反應D型胺基酸
外文關鍵詞: the diazo compound with chiral auxiliary, asymmetric N-H insertion reaction, D form amino acid
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分成兩個部分,首先利用本實驗室所開發之新穎氮轉移試劑,來合成出具對掌輔助(Chiral auxiliary)修飾之胺基酸酯類重氮化合物,並進一步對其進行N-H卡賓(Carbene)插入反應,藉此探討對掌輔助結構在重氮化合物進行不對稱合成之影響。
    過去文獻在探討N-H插入反應時,多使用昂貴且合成難度高的配體或光學試劑,以達到高光學選擇性,因此我們提出在重氮化合物修飾上對掌輔助劑,預期提高N-H插入反應的光學選擇性。首先我們對天然樟腦化合物進行不同位相之官能基修飾,再與苯丙胺酸經由三步驟合成路徑,得到多種具對掌輔助結構之重氮化合物。最後將化合物與鄰氨基苯甲醚(o-Anisidine)進行N-H插入反應,想藉由鄰位的甲醚官能基探討非鏡像異構物的比例(diastereomeric ratio)。
    實驗結果顯示,僅使用具對掌輔助修飾之重氮化合物,對N-H插入反應並沒有顯著的選擇性差異,故我們嘗試搭配相較容易合成的光學磷酸試劑,在對掌輔助劑與光學磷酸試劑的共同作用下, N-H插入反應的不對稱合成選擇性可以提高至三成,不同的對掌輔助結構也提供不同光學選擇性的結果。此外,我們用烏爾曼反應(Ullmann reaction)合成L型標準品,以確認產物是否為自然界鮮少的D型胺基酸結構。並且也嘗試使用容易除去的胺類或醯胺類保護基來進行N-H插入反應的探討,同時發現實驗步驟的先後順序對產率與選擇性的影響性。
    於本研究中,我們原先預期利用對掌輔助劑之立體障礙與光學磷酸試劑的作用,應可對平面分子的重氮官能基進行N-H插入反應,製備出具高光學選擇性的非天然界胺基酸。雖然我們成功地合成出多樣性的對掌輔助劑重氮化合物且製備出不同的光學磷酸試劑,在兩者搭配下有不錯的產率,儘管可惜地是反應結果僅有達到三成的光學選擇性,但我們仍能製備的特殊具對掌輔助劑的重氮結構,或許在未來是可以朝向對分子內的N-H插入反應來探討其選擇性。

    D-amino acid is of certain importance to many organisms, but it is not easily available in the biological world. However, a nitrogen-transfer reagent which was developed in our laboratory was carried out to synthesize substituted diazo ester with a chiral auxiliary from daily essential amino acids to explore the selectivity of asymmetric N-H insertion and the synthesis of D-amino acids.
    We firstly modified the camphor compounds on to the amino acid structure which was confirmed by 2D-NMR spectrum (NOESY), and applied the result onto other eight different chiral auxiliaries. During the process, we found that the chiral auxiliary of the phenol compound was not successful. Therefore, we only obtained five different chiral auxiliaries of diazo compounds in the end.
    We also tried to improve the selectivity of asymmetric N-H insertion reaction by combining with optical phosphoric acid reagents. The authentic standard of L-form amino acid was prepared by the Ullmann reaction and was used to the comparison of the synthesized L-from product. Furthermore, instead of the aniline group, we also explored the N-H insertion process with other amines or amides which were protected by easily removable protecting groups. One of the important factors affecting the selectivity was unexpectedly found that the adding order of the reagents did affect the yields and stereoselectivity of the products.
    Under the combination of a variety of chiral auxiliary diazo compounds and different optical phosphoric acid reagents, we could obtained good yields of N-H insertion products. Unfortunately, these reactions resulted only up to 30% optical purity. In conclusion, we could still prepare a special diazo compounds with chiral auxiliary, which might be useful towards to the N-H intramolecular insertion reaction with good stereoselectivity in the future.

    摘要 I 致謝 VI 目錄 VII 圖目錄 X 表目錄 XI 流程圖 XII 第一章 前言 1 1.1. α-胺基酸 1 1.2. 不對稱的N-H插入反應 3 1.3. 重氮化合物的合成 6 1.4 研究動機 9 第二章 結果與討論 10 2.1. 合成對掌輔助劑 10 2.1.1. 格林納加成反應的條件優化 12 2.1.2. 樟腦衍生化合物3a、3b與5之2D-NMR結構鑑定 14 2.2. 合成具有光學結構之重氮化合物 20 2.2.1. 對掌輔助劑與苯丙胺酸之酯化反應 21 2.2.2. 合成對掌輔助劑之銨鹽 23 2.2.3. 對掌輔助劑的銨鹽之氮轉移反應 26 2.3. 合成光學試劑之(S)-BINOL Phosphoric Acid 29 2.3.1. 甲基化之條件優化 30 2.3.2. 硼酸化條件優化 31 2.3.3. 不同芳香環之鈴木反應 33 2.4. 不對稱之N-H插入反應 34 2.4.1.不同芳香結構之(S)-BINOL磷酸試劑與不同溫度下之選擇性差異探討 35 2.4.2. 烏爾曼反應合成L型苯丙胺酸產物 37 2.4.3. 不同醯胺或胺類在N-H插入之探討 39 2.4.4. 當量與濃度對產率及選擇性之影響 43 2.4.5. 不同對掌輔助劑之N-H插入反應探討 44 第三章 結論 45 第四章 實驗步驟 46 4.1. General information 46 4.1.1. Materials 46 4.1.2. Methods 46 4.1.3. Machines 46 4.2. Synthesis of 2-Exo-phenyl-3-isoborneol (5) 48 4.2.1. (-)-2-Phenylisoborneol (1) 48 4.2.2. 2-Phenylbornene (2) 49 4.2.3. 2-Endo-phenyl-3-isoborneol (3a) and 2-Exo-phenyl-3-borneol (3b) 49 4.2.4. 2-Exo-phenyl-3-bornanone (4) 51 4.2.5. 2-Exo-phenyl-3-isoborneol (5) 51 4.3. Synthesis of (S)-2’-Methoxy-1,1’-binaphthalen-2-ol (6) 52 4.4. Synthesis of 2-(3-(4-Fluorophenoxy)-3-oxopropyl) benzene-diazonium hexafluorophosphate (8) 53 4.4.1. 4-Fluorophenyl (E)-3-(2-nitrophenyl) acrylate (7) 53 4.4.2. 2-(3-(4-Fluorophenoxy)-3-oxopropyl) benzene-diazonium hexafluoro-phosphate (8) 54 4.5. General procedure for synthesis of Chiral Brønsted Acids (12a-c) 55 4.5.1. (S)- 2,2’-Dimethoxy-1,1’dinaphthyl (9) 55 4.5.2. (S)-(2,2’-Dimethoxy-(1,1’binaphthalene)-3,3’-diyl) diboronic acid (10) 56 4.5.3. General Procedure for the Suzuki Cross-Coupling Reaction (A) 57 4.5.4. General Procedure for Demethylation Reaction (B) 59 4.5.5. General Procedure for Chiral Brønsted Acids (C) 60 4.6. General Procedure for Esterification Reaction (D) 62 4.7. General Procedure for Boc Deprotection Reaction (E) 67 4.8. General Procedure for N-Transfer Reaction (F) 71 4.9. Synthesis of (2-Methoxyphenyl)-L-phenylalanine (17) 75 4.10. General Procedure for N-H Insertion Reaction (G) 77 第五章 參考文獻 84 第六章 附錄 89

    [1]. Vickery, H. B.; Schmidt, C. L. A., The History of the Discovery of the Amino Acids. Chemical Reviews 1931, 9 (2), 169-318.
    [2]. Maruoka, K.; Ooi, T., Enantioselective Amino Acid Synthesis by Chiral Phase-Transfer Catalysis. Chemical Reviews 2003, 103 (8), 3013-3028.
    [3]. Genchi, G., An overview on d-amino acids. Amino Acids 2017, 49 (9), 1521-1533.
    [4]. Kiriyama, Y.; Nochi, H., D-Amino Acids in the Nervous and Endocrine Systems. Scientifica (Cairo) 2016, 2016, 6494621-6494621.
    [5]. Huang, H.; Zheng, Z.; Luo, H.; Bai, C.; Hu, X.; Chen, H., A Novel Class of P−O Monophosphite Ligands Derived from d-Mannitol:  Broad Applications in Highly Enantioselective Rh-Catalyzed Hydrogenations. The Journal of Organic Chemistry 2004, 69 (7), 2355-2361.
    [6]. Monti, C.; Gennari, C.; Piarulli, U., Rh-catalysed asymmetric hydrogenations with a dynamic library of chiral tropos phosphorus-ligands. Tetrahedron Letters 2004, 45 (37), 6859-6862.
    [7]. Monti, C.; Gennari, C.; Piarulli, U.; de Vries, J. G.; de Vries, A. H. M.; Lefort, L., Rh-Catalyzed Asymmetric Hydrogenation of Prochiral Olefins with a Dynamic Library of Chiral TROPOS Phosphorus Ligands. Chemistry – A European Journal 2005, 11 (22), 6701-6717.
    [8]. Mordant, C.; Dünkelmann, P.; Ratovelomanana-Vidal, V.; Genet, J.-P., A Versatile Route to syn- and anti-α-Amino β-Hydroxy Esters from β-Keto Esters by Dynamic Kinetic Resolution with Ru-SYNPHOS® Catalyst. European Journal of Organic Chemistry 2004, 2004 (14), 3017-3026.
    [9]. Nájera, C.; Sansano, J. M., Catalytic Asymmetric Synthesis of α-Amino Acids. Chemical Reviews 2007, 107 (11), 4584-4671.
    [10]. Saaby, S.; Bella, M.; Jørgensen, K. A., Asymmetric Construction of Quaternary Stereocenters by Direct Organocatalytic Amination of α-Substituted α-Cyanoacetates and β-Dicarbonyl Compounds. Journal of the American Chemical Society 2004, 126 (26), 8120-8121.
    [11]. Yang, J.; Ruan, P.; Yang, W.; Feng, X.; Liu, X., Enantioselective carbene insertion into the N–H bond of benzophenone imine. Chemical Science 2019, 10 (44), 10305-10309.
    [12]. Kobayashi, S.; Hamada, T.; Manabe, K., The Catalytic Asymmetric Mannich-Type Reactions in Aqueous Media. Journal of the American Chemical Society 2002, 124 (20), 5640-5641.
    [13]. Siva, A.; Murugan, E., Syntheses of new dimeric-Cinchona alkaloid as a chiral phase transfer catalysts for the alkylation of Schiff base. Journal of Molecular Catalysis A: Chemical 2005, 241 (1), 111-117.
    [14]. Ooi, T.; Uematsu, Y.; Maruoka, K., Asymmetric Strecker Reaction of Aldimines Using Aqueous Potassium Cyanide by Phase-Transfer Catalysis of Chiral Quaternary Ammonium Salts with a Tetranaphthyl Backbone. Journal of the American Chemical Society 2006, 128 (8), 2548-2549.
    [15]. Palomo, C.; Oiarbide, M.; Halder, R.; Laso, A.; López, R., Enantioselective Aza-Henry Reactions Assisted by ZnII and N-Methylephedrine. Angewandte Chemie International Edition 2006, 45 (1), 117-120.
    [16]. Zuend, S. J.; Coughlin, M. P.; Lalonde, M. P.; Jacobsen, E. N., Scaleable catalytic asymmetric Strecker syntheses of unnatural α-amino acids. Nature 2009, 461 (7266), 968-970.
    [17]. Gillingham, D.; Fei, N., Catalytic X–H insertion reactions based on carbenoids. Chemical Society Reviews 2013, 42 (12), 4918-4931.
    [18]. Keipour, H.; Ollevier, T., Iron-Catalyzed Carbene Insertion Reactions of α-Diazoesters into Si–H Bonds. Organic Letters 2017, 19 (21), 5736-5739.
    [19]. Saito, H.; Morita, D.; Uchiyama, T.; Miyake, M.; Miyairi, S., Cinchona alkaloids induce asymmetry in the insertion reaction of thermally generated carbenes into N−H bonds. Tetrahedron Letters 2012, 53 (49), 6662-6664.
    [20]. Xu, B.; Zhu, S.-F.; Xie, X.-L.; Shen, J.-J.; Zhou, Q.-L., Asymmetric NH Insertion Reaction Cooperatively Catalyzed by Rhodium and Chiral Spiro Phosphoric Acids. Angewandte Chemie International Edition 2011, 50 (48), 11483-11486.
    [21]. Zhu, S.-F.; Xu, B.; Wang, G.-P.; Zhou, Q.-L., Well-Defined Binuclear Chiral Spiro Copper Catalysts for Enantioselective N–H Insertion. Journal of the American Chemical Society 2012, 134 (1), 436-442.
    [22]. Aller, E.; Buck, R. T.; Drysdale, M. J.; Ferris, L.; Haigh, D.; Moody, C. J.; Pearson, N. D.; Sanghera, J. B., N–H insertion reactions of rhodium carbenoids. Part 1. Preparation of α-amino acid and α-aminophosphonic acid derivatives. Journal of the Chemical Society, Perkin Transactions 1 1996, (24), 2879-2884.
    [23]. Liu, G.; Li, J.; Qiu, L.; Liu, L.; Xu, G.; Ma, B.; Sun, J., Palladium-catalyzed carbenoid based N–H bond insertions: application to the synthesis of chiral α-amino esters. Organic & Biomolecular Chemistry 2013, 11 (36), 5998-6002.
    [24]. Buck, R. T.; Moody, C. J.; Pepper, A. G., N-H Insertion reactions of rhodium carbenoids. Part 4. New chiral dirhodium(II) carboxylate catalysts. 2002, 2002 (8), 16-33.
    [25]. Brewster, P.; Hiron, F.; Hughes, E. D.; Ingold, C. K.; Rao, P. A. D. S., Configuration of Carbohydrates, Hydroxy-Acids and Amino-Acids: Configurations of Amino-Compounds and the Steric Course of Deamination. Nature 1950, 166 (4213), 179-180.
    [26]. Moumne, R.; Lavielle, S.; Karoyan, P., Efficient Synthesis of β2-Amino Acid by Homologation of α-Amino Acids Involving the Reformatsky Reaction and Mannich-Type Imminium Electrophile. The Journal of Organic Chemistry 2006, 71 (8), 3332-3334.
    [27]. Holton, T. L.; Schechter, H., Advantageous Syntheses of Diazo Compounds by Oxidation of Hydrazones with Lead Tetraacetate in Basic Environments. The Journal of Organic Chemistry 1995, 60 (15), 4725-4729.
    [28]. Barluenga, J.; Moriel, P.; Valdés, C.; Aznar, F., N-Tosylhydrazones as Reagents for Cross-Coupling Reactions: A Route to Polysubstituted Olefins. Angewandte Chemie International Edition 2007, 46 (29), 5587-5590.
    [29]. White, E. H., The Chemistry of the N-Alkyl-N-nitrosoamides. I. Methods of Preparation. Journal of the American Chemical Society 1955, 77 (22), 6008-6010.
    [30]. Myers, E. L.; Raines, R. T., A Phosphine-Mediated Conversion of Azides into Diazo Compounds. Angewandte Chemie International Edition 2009, 48 (13), 2359-2363.
    [31]. Goddard-Borger, E. D.; Stick, R. V., An Efficient, Inexpensive, and Shelf-Stable Diazotransfer Reagent:  Imidazole-1-sulfonyl Azide Hydrochloride. Organic Letters 2007, 9 (19), 3797-3800.
    [32]. Regitz, M., New Methods of Preparative Organic Chemistry. Transfer of Diazo Groups. Angewandte Chemie International Edition in English 1967, 6 (9), 733-749.
    [33]. Taber, D. F.; Sheth, R. B.; Joshi, P. V., Simple Preparation of α-Diazo Esters. The Journal of Organic Chemistry 2005, 70 (7), 2851-2854.
    [34]. Taber, D. F.; Raman, K., Enantioselective carbocyclization: a facile route to chiral cyclopentanes. Journal of the American Chemical Society 1983, 105 (18), 5935-5937.
    [35]. Taber, D. F.; Raman, K.; Gaul, M. D., Enantioselective ring construction: synthesis of (+)-estrone methyl ether. The Journal of Organic Chemistry 1987, 52 (1), 28-34.
    [36]. Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima, T.; Kamiya, Y., Reactions of carbonyl compounds with Grignard reagents in the presence of cerium chloride. Journal of the American Chemical Society 1989, 111 (12), 4392-4398.
    [37]. Dimitrov, V.; Kostova, K.; Genov, M., Anhydrous cerium(III) chloride — Effect of the drying process on activity and efficiency. Tetrahedron Letters 1996, 37 (37), 6787-6790.
    [38]. Freeman, J. H.; Smith, M. L., The preparation of anhydrous inorganic chlorides by dehydration with thionyl chloride. Journal of Inorganic and Nuclear Chemistry 1958, 7 (3), 224-227.
    [39]. Rüedi, G.; Hansen, H.-J., Thermal Isomerization of Isoborneols and Dehydroisoborneols to New Chiral Building Blocks in Terpenoid Synthesis. Helvetica Chimica Acta 2004, 87 (8), 1968-1989.
    [40]. Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M., Complete Field Guide to Asymmetric BINOL-Phosphate Derived Brønsted Acid and Metal Catalysis: History and Classification by Mode of Activation; Brønsted Acidity, Hydrogen Bonding, Ion Pairing, and Metal Phosphates. Chemical Reviews 2014, 114 (18), 9047-9153.
    [41]. Wipf, P.; Jung, J.-K., Formal Total Synthesis of (+)-Diepoxin σ. The Journal of Organic Chemistry 2000, 65 (20), 6319-6337.
    [42]. Armarego, W. L. F.; Chai, C. L. L., Chapter 4 - Purification of Organic Chemicals. In Purification of Laboratory Chemicals (Fifth Edition), Armarego, W. L. F.; Chai, C. L. L., Eds. Butterworth-Heinemann: Burlington, 2003; pp 80-388.
    [43]. Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F., Accelerating Effect Induced by the Structure of α-Amino Acid in the Copper-Catalyzed Coupling Reaction of Aryl Halides with α-Amino Acids. Synthesis of Benzolactam-V8. Journal of the American Chemical Society 1998, 120 (48), 12459-12467.
    [44]. Manna, S. K.; Panda, G., Synthesis of enantiomerically enriched indolines and tetrahydroisoquinolines from (S)-amino acid-derived chiral carbocations: an easy access to (3S,4R)-demethoxy-3-isopropyl diclofensine. Organic & Biomolecular Chemistry 2014, 12 (41), 8318-8324.
    [45]. Li, M.-L.; Yu, J.-H.; Li, Y.-H.; Zhu, S.-F.; Zhou, Q.-L., Highly enantioselective carbene insertion into N–H bonds of aliphatic amines. Science 2019, 366 (6468), 990.
    [46]. Chen, D.; Wang, Y.; Klankermayer, J., Enantioselective Hydrogenation with Chiral Frustrated Lewis Pairs. Angewandte Chemie International Edition 2010, 49 (49), 9475-9478.
    [47]. Van Toan, V.; Lightner, D. A., The octant rule11For part 22 see D.A. Lightner, T.D. Bouman, B.V. Crist, S.L. Rodgers, M.A. Knobeloch and A.M. Jones, J. Am. Chem. Soc., in press (1987).: XXIII. antioctant effects in γ,δ -unsaturated ketones. Tetrahedron 1987, 43 (24), 5769-5774.
    [48]. Dabbagh, H. A.; Chermahini, A. N.; Teimouri, A., Aryloxy tetrazoles with axial chirality: Synthesis and partial resolution of 5-(1-(2-methoxynaphthalen-1-yl)naphthalen-2-yloxy)-1H-tetrazole. Heteroatom Chemistry 2006, 17 (5), 416-419.
    [49]. 呂官翰, 將胺基逕轉為重氮化合物的新穎氮轉移試劑開發. 國立成功大學化學系碩士論文 2019.
    [50]. Genov, M.; Almorín, A.; Espinet, P., Efficient Synthesis of Chiral 1,1′-Binaphthalenes by the Asymmetric Suzuki–Miyaura Reaction: Dramatic Synthetic Improvement by Simple Purification of Naphthylboronic Acids. Chemistry – A European Journal 2006, 12 (36), 9346-9352.
    [51]. Dai, X.; Davies, H. M. L., Formal Enantioselective [4+3] Cycloaddition by a Tandem Diels–Alder Reaction/Ring Expansion. Advanced Synthesis & Catalysis 2006, 348 (16-17), 2449-2456.
    [52]. Yang, H.-T.; Zhou, S.; Chang, F.-S.; Chen, C.-R.; Gau, H.-M., Synthesis, Structures, and Characterizations of [ArTi(O-i-Pr)3]2 and Efficient Room-Temperature Aryl−Aryl Coupling of Aryl Bromides with [ArTi(O-i-Pr)3]2 Catalyzed by the Economic Pd(OAc)2/PCy3 System. Organometallics 2009, 28 (19), 5715-5721.
    [53]. Castelló, L. M.; Hornillos, V.; Vila, C.; Giannerini, M.; Fañanás-Mastral, M.; Feringa, B. L., Pd-Catalyzed Cross-Coupling of Aryllithium Reagents with 2-Alkoxy-Substituted Aryl Chlorides: Mild and Efficient Synthesis of 3,3′-Diaryl BINOLs. Organic Letters 2015, 17 (1), 62-65.
    [54]. Simonsen, K. B.; Gothelf, K. V.; Jørgensen, K. A., A Simple Synthetic Approach to 3,3‘-Diaryl BINOLs. The Journal of Organic Chemistry 1998, 63 (21), 7536-7538.
    [55]. Lee, C.-Y.; Cheon, C.-H., Diastereomeric Resolution of rac-1,1′-Bi-2-naphthol Boronic Acid with a Chiral Boron Ligand and Its Application to Simultaneous Synthesis of (R)- and (S)-3,3′-Disubstituted 1,1′-Bi-2-naphthol Derivatives. The Journal of Organic Chemistry 2013, 78 (14), 7086-7092.

    下載圖示 校內:2025-08-12公開
    校外:2025-08-12公開
    QR CODE