簡易檢索 / 詳目顯示

研究生: 許庭維
Hsu, Tin-Way
論文名稱: 氧化鋅摻雜鈷在低載子濃度下磁性、電性及光學性質研究
The study of transport and magnetic properties from epitaxy of Co doped ZnO in insulating and semiconducting regime
指導教授: 黃榮俊
Huang, Jung-Chun-Andrew
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 94
中文關鍵詞: 熱退火氧化鋅
外文關鍵詞: annealing, ZnO, Co
相關次數: 點閱:80下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用分子束磊晶系統,在Al2O3(11‐20)上成長氧化鋅摻雜鈷多層膜([ZnO20Å/Co1Å]25),再利用不同的退火條件,製備出低載子濃度的樣品,由RHEED 與XRD 實驗結果得知,退火前後樣品仍為高品質的單晶結構。此外,利用各種磁電性量測工具的分析(SQUID、XAS、Hall effect),對低載子濃度(insulating regime)的氧化鋅摻雜鈷的單晶薄膜樣品的磁性機制來源做出了一個新的解釋。最新第一原理理論計算推測在氧化鋅摻雜鈷的系統,Co離子能帶分裂形成一個自旋向上和自旋向下的能帶,自旋向上的能帶會位於價帶,並且和淺層受體能階(shallow donor level)的自旋向上的電子產生s-d交互作用(s-d exchange)將其束縛住,而Co自旋向下的能帶則會再分裂成2個能帶,其中一個為空的能階位於導帶的下緣,縮短了和缺陷所形成的淺層受體能帶(shallow donor level)之間的能隙。由於淺層受體能帶的自旋向上的電子被束縛住,所以只有淺層受體能帶的自旋向下的電子可以躍遷到導帶(conduction band),所以造成淺層受體能帶自旋淨磁矩產生磁性訊號。同時我們的鐵磁訊號的強弱會隨著溫度上升而上升的原因,也從這個新的磁性機制模型找到了解釋。

    In this study, we prepared [ZnO20Å/Co1Å]25 on Al2O3(11‐20) substrates by Molecular Beam Epitaxy(MBE).The samples were annealed with different conditions by a rapid thermal annealing(RTA) to control the carrier concentration.The investigation by RHEED and XRD concluded that High quality single crystal films were grown before and after annealing a.Furthermore,from the results of SQUID,XAS and Hall effect,we study a new model about the origins of ferromagnetism in Co-doped ZnO at insulating regime.For Co:Zn DMS,a recent theoretical work by Dr.J.Chen indicated that the energy states of Co can be split as the states of spin-up and spin-down.Interestingly,the Co spin-up state is located at valence band,and has s-d exchange with the spin-up electrons in the shallow donor level (induced by defects).The spin-down state of Co can be further spilt into two states,one of which is an empty state at the bottom of conduction band. Due to the spin-up electrons of shallow donor level are bound by the s-d exchange interaction. So that,only the spin-down electrons of shallow donor level can be easily excited to the conduction band. We concluded that the origin of magnetization in Co:ZnO can be attributed to the net spin moment in shallow donor level.The new proposed model can also explain the anomalous M(T) behavior that magnetization can be enhanced with increasing of the temperature.

    第一章 緒論 .....1 1.1 簡介 ................................................. 1 1.2 氧化鋅薄膜特性簡介 ..................................... 4 1.3 文獻回顧 .............................................. 6 1.4 研究動機 ............................................. 13 Reference ............................................... 16 第二章 相關理論介紹 .....17 2.1 薄膜成長理論 ......................................... 17 2.1.1 成長模式 ........................................... 17 2.1.2 成長理論 ........................................... 18 2.2 平均場理論(MEAN FIELD THEORY)......................... 20 2.3 磁性來源 ............................................. 22 2.3.1 交互巡迴式鐵磁性......................................23 2.3.2 侷限載子式鐵磁性(Localized Carrier)...................24 2.3.3 束縛磁極化子模型 (Bound Magnetic Polaron, BMP)........26 2.3.4 A New Theoretical Model About DMS ..................28 Reference ............................................... 30 第三章 儀器介紹與實驗步驟 .....32 3.1 實驗製成儀器‐分子束磊晶系統 ............................32 3.2 實驗量測儀器 ..........................................37 3.2.1 反射式高能電子繞射儀(Reflection High Energy Electron Diffraction,RHEED)..............................37 3.2.2 X-ray 繞射儀(X-ray diffraction).....................40 3.2.3 超導量子干涉磁量儀....................................42 3.2.4 霍爾效應量測.........................................45 3.2.5 X‐ray 吸收光譜......................................46 3.2.6 穿透率量測 ..........................................57 3.3 實驗步驟 ..............................................57 3.3.1 系統真空環境之準備 ...................................57 3.3.2 基板的準備 ..........................................58 3.3.3 成長樣品 ............................................59 3.3.4 樣品量測 ............................................61 Reference ............................................... 63 第四章 結果與討論 .....64 4.1 ZN0.95CO0.05O 薄膜的結構分析 ..........................66 4.1.1 Zn0.95Co0.05O 與薄膜膜成長在Al2O3(11-20)基板上之RHEED 及XRD 結果與討論 ........................................... 66 4.2 ZN0.95CO0.05O 薄膜的UV-VIS 光譜分析 ...................70 4.3 ZN0.95CO0.05O 薄膜的X 光吸收光譜分析 ...................76 4.3.1 Co-K edge 前緣吸收光譜(XANES) ......................76 4.3.2 Co-K edge 延伸吸收光譜(EXAFS) ......................79 4.4 ZN0.95CO0.05O 單晶薄膜的電性與磁性分析 ..................82 4.4.1 電性分析 ............................................82 4.4.2 磁性分析 ............................................84 4.4.3 溫度變化和磁性的關係 .................................87 4.4.4 磁性來源探討 ........................................88 Reference ............................................... 91 第五章 結論 .....92

    第一章
    [1.1] 黃榮俊、許華書,物理雙月刊,26 期4 卷2004 年8 月,p.599
    [1.2] 胡裕民,物理雙月刊,26 期4 卷2004 年8 月,p.587
    [1.3] H. Ohno et al., Science, 281 (1998), 951
    [1.4] T. Deitl, H. Ohno et al., Science, 287 (2000), 1019
    [1.5] A.J. Behan, A. Mokhtari, PRL 100, 047206 (2008)
    [1.6] J. M. D. Coey et al., Nature Materials, 4 (2005), 173
    [1.7] Y.Igasaki and H.Saito,Thin Solid Films ,223.199(1991)
    [1.8] S.-s.Yan et al.,J.Phys.Condens.Matter 18,10,469(2006)
    [1.9] A.Chattopadhyay et al., PRL. 87, 227202(2001)
    [1.10] Z. L. Lu and J. C. A. Huang , APL ,95 ,102501 (2009)

    第二章
    [2.1] J.C.A. Huang,Ph.D. Thesis,Univ. of Illinois
    [2.2] B.Heinrich,J.A.C.Bland,Ultrathin Magnetic Structure I,Springer-Verlag,New York (1994)
    [2.3] E.Bauer,Appl. Surf. Sci. 11/12,479(1982)
    [2.4] B.Heinrich,J.A.C.Bland,Ultrathin Magnetic Structure I,Springer-Verlag,New York (1994)
    [2.5] B.Dodson,Phys.Rev.B,36,6288(1987)
    [2.6] W.Wulfhekel,F.Zavaliche,R.Hertel,S.Bodea,G.Steierl,G.Liu and J.Kirschner,Phys.Rev.B 68,144416(2003)
    [2.7] P.J.Berlowitz,J.W.He and D.W.Goodman,Surf.Sci.231,315 (1990)
    [2.8] T. Deitl¸and H. Ohno et al.,Science 287 (2000) 1019
    [2.9] C. Zener et al.,Phys. Rev. 81 (1950) 440
    [2.10] H.Akai et al., Phys. Rev. Lett.,81(1998),3002
    [2.11] J.Konig et al., Phys. Rev. Lett.,84(2000),5628
    [2.12] J.Konig et al., Phys. Rev. Lett.,86 2001),563731
    [2.13] V.I.Litvinov et al,Phys.Rev.Lett.86(2001)5593
    [2.14] M.Berciu et al,Phys.Rev.Lett.86(2001)107203
    [2.15] J. M. D. Coey et al., Nature Materials, 4 (2005),173

    第三章
    [3.1] See e. g. “Molecular Beam Epitaxy”,ed. by M. A.Herman
    and H.Sitter (Berlin Springer,1989)
    [3.2] P. K. Larsen and P. J. Dobson,Reflection High‐Energy
    Electron Diffraction and Reflection Electron Imaging of
    Surface, NATO ASI Series
    [3.3] Soshin Chikazumi and Stanley H. Charap “Physics of
    Magnetism”(1972)
    [3.4] 國立台灣大學物理學系,楊鴻昌教授,科學新知,6 期12 卷
    1991 年,p72-p79
    [3.5] 施敏,半導體元件物理與製作技術,p23-p47,(1997)
    [3.6] D .C .Koningsberger and R .Prins,X‐ray Absorption
    principles,applications,techniques of EXAFS,SEXAFS and
    XANES (1988) 574
    [3.7] J.J.Rehr and R.C.Albers,Rev. Mod. Phys. 72 (2000) 621

    第四章
    [4.1] B.E.Sernelius , K.F.Berggern , Phys. Rev. B 37, 10244
    -10248 (1988)
    [4.2] X.C. Liu et al. Appl. Phys. Lett., 88 (2006), 252503
    [4.3] 邱淑琳 國立成功大學物理研究所(2007)
    [4.4] Kevin R. Kittilstved and Daniel R. Gamelin et al.Phys.
    Rev. Lett. 97(2006) 037203
    [4.5] Z. L. Lu and J. C. A. Huang , APL ,95 ,102501 (2009)

    下載圖示 校內:2013-01-25公開
    校外:2013-01-25公開
    QR CODE