簡易檢索 / 詳目顯示

研究生: 王至宇
Wang, Chih-Yu
論文名稱: 電遷移對銅微結構與微拉伸機械性質之影響
Effect of Electromigration on Micro Structure and Micro Tensile Test Mechanical Properties of Copper
指導教授: 林光隆
Lin, Kwang-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 202
中文關鍵詞: 電遷移再結晶雙晶差排機械性質
外文關鍵詞: Copper, electromigration, recrystallization, twin, dislocation, tensile property
相關次數: 點閱:43下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究先將純銅在678°C (0.7 Tm)下退火12小時,消除試片在加工時產生的殘留應力,接著施加不同電流密度 (2×10^4 A/cm^2 ~ 3×10^4 A/cm^2), 並在每次通電結束時用液態氮急速冷卻試片以保存通電當下的微結構。本研究發現在大部分的通電條件下,純銅之拉伸機械性質皆有提升,循環通電後其降伏應力最多提升89%;楊氏係數最多提升96.2%;極限抗拉強度最多提升6.5%,而伸長率在通電後造成最多5.5%的下降。後續利用電子背向散射衍射分析(Electron backscatter diffraction, EBSD)觀察到純銅因通電造成晶粒細化、差排密度增加、晶粒取向改變、雙晶比例提升等微結構改變,以及利用掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 觀察到試片破斷面在通電後出現延展性下降之微結構變化。

    Copper as the fine pitch circuit line material of advanced electronic packaging substrate will experience tensile stress during manufacturing as well as electronic application. Electromigration will induce electromigration force and Joule heat to the circuit line during electronic application. It is imaginable that electromigration will have impact on the mechanical properties and microstructure of the copper circuit. In this study, we investigated the effect of electromigration on the micro tensile mechanical property of pure copper, and the mechanism was explored by incorporating the microstructure evolutions. The pure copper specimens were pre-annealed at 678°C for 12 hours to reduce the residual stress generated during fabrication. The subsequent current stressing treatments at different current densities (2~ 3×10^4 A/cm^2) were found to enhance the yield strength up to 89%, Young’s modulus 96.2%, and ultimate tensile strength 6.5%, whereas degrade elongation by 5.5%. The electron backscatter diffraction analysis showed that non-deformation recrystallization occurred which induced grain refining and twin formation of Cu. The influence of dislocation, twin fraction, and grain orientation on the mechanical properties were investigated and discussed in the study. The athermal electron wind force effect found predominated over the thermal Joule heat on governing the microstructure variation and the mechanical properties.

    摘要 I Extended Abstract II 誌謝 XXXVI 目錄 XXXVII 表目錄 XL 圖目錄 XLI 第一章 簡介 1 1-1 純銅簡介 1 1-2 電遷移 3 1-2-1 電遷移理論 3 1-2-2 焦耳熱效應 6 1-2-3 電遷移對晶格結構之影響 8 1-2-4 電致再結晶 12 1-3 微結構對機械性質之影響 16 1-3-1 機械性質簡介 16 1-3-2 晶界與雙晶對機械性質之影響 20 1-3-3 晶粒取向對機械性質之影響 27 1-3-4 差排密度對機械性質之影響 30 1-4 研究動機 33 第二章 實驗方法 34 2-1 實驗流程 34 2-2 試片前處理 36 2-3 通電裝置 38 2-4 通電臨場溫度量測 43 2-5 微拉伸測試 44 2-6 電解拋光 46 2-7 分析方法 48 2-7-1 電子背向散射分析 48 2-7-1-1 晶粒尺寸 51 2-7-1-2 晶界 51 2-7-1-3 晶粒取向 52 2-7-1-4 差排密度 52 2-7-2 掃描式電子顯微鏡分析 52 2-7-3 穿透式電子顯微鏡分析 53 第三章 結果與討論 54 3-1 試片中心溫度 54 3-2 微拉伸機械性質 57 3-3 微結構分析 68 3-3-1 晶粒尺寸變化 68 3-3-2 晶界長度變化 74 3-3-3 晶粒取向變化 79 3-3-4 差排密度變化 83 3-4 機械性質與微結構之關係 86 3-4-1 YS與微結構之關係 87 3-4-2 Young’s modulus與微結構之關係 93 3-4-3 UTS與微結構之關係 98 3-4-4 EL與微結構之關係 102 3-5 破斷分析 106 3-5-1 破斷面分析 106 3-5-2 破斷處微結構分析 112 第四章 結論 116 參考文獻 117 附錄 122

    [1] J. Lienig and M. Thiele, Fundamentals of Electromigration-Aware Integrated Circuit Design, Springer, Berlin, Germany, 13-18, (2018).
    [2] Lloyd, J. R., Clements, J., & Snede, R. Copper metallization reliability. Microelectronics Reliability, 39, 1595-1602, (1999).
    [3] K. C. Chen, W. W. Wu, C. N. Liao, L. J. Chen, and K. Tu, "Observation of atomic diffusion at twin-modified grain boundaries in copper," Science, vol. 321, pp. 1066-1069, (2008).
    [4] A. S. Nowick, "Diffusion in solids: recent developments," Elsevier, p.329, (2012).
    [5] C. Witt, V. Calero, C. K. Hu, and G. Bonilla, Electromigration: Void Dynamics, IEEE Transactions on Device and Materials Reliability 446 – 451, (2016).
    [6] J. Y. He, K. L. Lin, and A. T. Wu, "The diminishing of crystal structure of Sn9Zn alloy due to electrical current stressing," Journal of Alloys and Compounds, vol. 619, pp. 372-377, (2015).
    [7] Y. H. Liao, C. L. Liang, K. L. Lin, and A. T. Wu, "High dislocation density of tin induced by electric current," AIP Advances, vol. 5, p. 127210, (2015).
    [8] P. C Liang and K. L. Lin, Non-deformation recrystallization of metal with electric current stressing, Journal of Alloys and Compounds 690-697, (2017).
    [9] J.-W. Park, H.-J. Jeong, S.-W. Jin, Effect of electric current on recrystallization kinetics in interstitial free steel and AZ31 magnesium alloy, Materials Characterization, 133, 70–76, (2017).
    [10] W.D. Callister. Fundamentals of Materials Science and Engineering, 9th ed. Wiley. p. 229-231, (2013).
    [11] B. Fu, C. Pei, H. Pan, Hall-Petch relationship of interstitial-free steel with a wide grain size range processed by asymmetric rolling and subsequent annealing. Material Research Express7, 116516, (2020).
    [12] Baker, B.W., Menon, E.S.K., McNelley, T.R. et al. Processing-Microstructure Relationships in Friction Stir Welding of MA956 Oxide Dispersion Strengthened Steel. Metallurgical and Materials Transactions E1, 318–330 (2014).
    [13] Y.B. Gao, Y.T. Ding, J.J. Chen, J.Y. Xu, Y.J. Ma, X.M. Wang, Effect of twin boundaries on the microstructure and mechanical properties of Inconel 625 alloy, Mater. Sci. Eng. A, 767 (2019).
    [14] H. Conrad, J. Narayan, On the grain size softening in nanocrystalline materials Scripta Mater., 42 ,pp. 1025-1030 (2000).
    [15] J. Han, The transition from an inverse pseudo Hall-Petch to a pseudo Hall-Petch behavior in nanocrystalline graphene, Carbon, 161 pp. 542-549, (2020).
    [16] X. Yuan, L. Chen, Y. Zhao, H. Di, F. Zhu, Dependence of grain size on mechanical properties and microstructures of high manganese austenitic steel, Procedia Eng 81, pp. 143-148 (2014).
    [17] M.A. Meyers, O. Vöhringer, V.A. Lubarda, The onset of twinning in metals: a constitutive description, Acta Mater., 49 ,pp. 4025-4039 (2001).
    [18] S. Lei, Z. Xu, L. Peng, X. Lai, Effect of grain size on the ductile-brittle fracture behavior of commercially pure titanium sheet metals, Mater. Sci. Eng., A, 822 (2021).
    [19] Yeap, K.B., Zschech, E., Hangen, U.D. et al. Elastic anisotropy of Cu and its impact on stress management for 3D IC: Nanoindentation and TCAD simulation study. Journal of Materials Research 27, 339–348 (2012).
    [20] Basavalingappa, A., Shen, M.Y. & Lloyd, J.R. Modeling the copper microstructure and elastic anisotropy and studying its impact on reliability in nanoscale interconnects. Mech Adv Mater Mod Process 3, 6 (2017).
    [21] R. Michael, The Influence of Impurities and Metallic Capping Layers on the Microstructure of Copper Interconnects, University at Albany, State University of New York. (2014).
    [22] G.I. Taylor, The mechanism of plastic deformation of crystals, Proc. Roy. Soc. A 145, 362–387, (1934).
    [23] K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy, Acta Mater., 62, pp. 141-155, (2014).
    [24] Li, W. J. & Lin, K. L., Strengthening of Inconel 600 alloy with electric current stressing, Materialia, 27, 101666, (2023).
    [25] Davydenko, A., Rybalko, A., P. Pal-Val, L. Pal-Val, Natsik, V., Giant Young’s Modulus Variations in Ultrafine-Grained Copper Caused by Texture Changes at Post-Spd Heat Treatment, Archives of Metallurgy and Materials, Vol. 60, Issue 4, (2015)
    [26] Friedel, J. “XLVI. Anomaly in the Rigidity Modulus of Copper Alloys for Small Concentrations.” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 44, no. 351 (1953)
    [27] Frank, F. C.; Read Jr, W. T. "Multiplication Processes for Slow Moving Dislocations". Physical Review. 79 (4): 722–723. (1950).
    [28] Benito, J.A., Jorba, J., Manero, J.M. et al. Change of Young’s modulus of cold-deformed pure iron in a tensile test. Metall Mater Trans A 36, 3317–3324 (2005).
    [29] Konopik, P., Farahnak, P., Rund, M., Prochazka, R. and Dzugan, J., Application of micro-tensile test for material characterization of mild steel DC01. Ubiquity Proceedings, 1(S1), p.33, (2018).
    [30] Sokolov, MA, & Lucon, E., Small Specimen Test Techniques: 6th Volume, ASTM International, p12-30, (2015).
    [31] B. Du and I. I. Suni, Mechanistic Studies of Cu Electropolishing in Phosphoric Acid Electrolytes, Journal of The Electrochemical Society, Vol. 151 Issue 6 Pages C375, (2004).
    [32] Metz, Florence Irene, "Electropolishing of metals " Retrospective Theses and Dissertations. 2622, (1960).
    [33] A.M. Awad, N.A. Abdel Ghany, T.M. Dahy, Removal of tarnishing and roughness of copper surface by electropolishing treatment, Applied Surface Science, Volume 256, Issue 13, (2010).
    [34] L. S. Toth, S. Biswas, C. Gu, and B. Beausir, "Notes on representing grain size distributions obtained by electron backscatter diffraction," Materials Characterization, vol. 84, pp. 67-71, (2013).
    [35] C. Moussa, M. Bernacki, R. Besnard and N. Bozzolo, About quantitative EBSD analysis of deformation and recovery substructures in pure Tantalum, IOP Conference Series: Materials Science and Engineering, Vol. 89 Issue 1, (2015).
    [36] N. Wieczorek, G. Laplanche, J.-K. Heyer, A.B. Parsa, J. Pfetzing-Micklich, G. Eggeler, Assessment of strain hardening in copper single crystals using in situ SEM microshear experiments, Acta Materialia, Volume 113, Pages 320-334, (2016).
    [37] L. Kommel, I. Hussainova, O. Volobueva, Microstructure and properties development of copper during severe plastic deformation, Materials & Design, Volume 28, Issue 7, pp 2121-2128, (2007).
    [38] Y. Jin, B. Lin, M. Bernacki, G.S. Rohrer, A.D. Rollett, N. Bozzolo, Annealing twin development during recrystallization and grain growth in pure nickel, Materials Science and Engineering: A, Volume 597, pp 295-303, (2014).
    [39] Jin Y., Bernacki M., Rohrer G.S., Rollett A.D., Lin B., Bozzolo N, Formation of annealing twins during recrystallization and grain growth in 304L austenitic stainless steel, Materials Science Forum, 753, pp. 113 - 116, (2013).
    [40] X. Wang, Y. Ding, Y. Gao, Y. Ma, J. Chen, B. Gan, Effect of grain refinement and twin structure on the strength and ductility of Inconel 625 alloy, Materials Science and Engineering: A, Volume 823, (2021)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE